
$36�IRU�]�26

Issue 2, Februray 2002

UHIHUHQFH

5HIHUHQFH
rfpubb.book Page 1 Tuesday, February 19, 2002 9:56 AM

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,
Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Management Facility™, License Server™,
Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020219095653

rfpubb.book Page 2 Tuesday, February 19, 2002 9:56 AM

3

rfpubb.book Page 3 Tuesday, February 19, 2002 9:56 AM
Table of Contents

++ . 11

01 . 11

RENAMES . 13

88 . 14

Application Definition Report (AP01) . 16

Application Field Edit Routines . 18

Application Painter . 24

Application Painter Member Processing Exits 27
Selection Code Processing . 28

Application Reports . 32

APSMACS Rule Library . 37

AT END/INVALID KEY . 39

ATTR . 40

Attributes, Screen Fields . 42

Bind and Translate Options, SQL . 46

CA . 49

CCODE . 50

Checkin . 51

Checkout . 53

CIC-ADDRESS. 55

CIC-ASSIGN . 55

CIC-CANCEL. 56

CIC-DELAY . 57

CIC-DELETEQ-TD . 58
Reference

4

rfpubb.book Page 4 Tuesday, February 19, 2002 9:56 AM
CIC-DELETEQ-TS . 59

CIC-FREEMAIN . 59

CIC-GETMAIN . 60

CIC-LOAD . 61

CIC-READQ-TD . 62

CIC-READQ-TS . 63

CIC-RELEASE . 64

CICS . 65

CIC-SCHEDULE-PSB. 65

CIC-SEND-TEXT. 66

CIC-SERVICE-RELOAD. 67

CIC-START . 67

CIC-TERM-PSB. 68

CIC-WRITEQ-TD . 69

CIC-WRITEQ-TS. 70

CLEAR . 71

CLEAR-ATTRS . 71

COBOL/2 Support. 72

CODE . 74

Comments . 75

Component List (MS01) . 76

CONTROL . 78

Control Files . 80

Control Points . 88

Database Calls . 97

Data Communication Calls . 101

Data Structure Definition (DS01) . 107

Data Structures . 109
Reference

5

rfpubb.book Page 5 Tuesday, February 19, 2002 9:56 AM
Date and Time Field Edits . 113

DB/DC Target Combinations . 118

DB-BIND . 119

DB-CLOSE . 120

DB-COMMIT . 121

DB-DECLARE . 122

DB-ERASE . 128

DB-FETCH . 134

DB-FREE . 135

DB-GET . 137

DB-MODIFY. 138

DB-OBTAIN . 143

DB-OPEN . 158

DB-PROCESS . 160

DB-ROLLBACK. 174

DB-STORE . 175

DB-SUBSCHEMA . 180

DDIFILE Report (DB01) . 181

DDI Statements. 182

DDISYMB Flags . 194

DECL . 199

DLG-ISPEXEC . 200

DLG-ISREDIT . 201

DLG-SETMSG . 201

DLG-VCOPY. 203

DLG-VDEFINE . 204

DLG-VDELETE . 205

DLG-VREPLACE . 206
Reference

6

rfpubb.book Page 6 Tuesday, February 19, 2002 9:56 AM
DLG-VRESET . 207

DPAR . 207

DS . 209

Entity Content Report (MS02). 210

Entity Cross Reference (MD01) . 212

Entity Parts List (EN01) . 214

Entity Search Utility Report (GS01). 216

Entity Use Report (EN02). 219

ENTRY . 221

Error Handling . 222

Error Processing Messages . 239

ESCAPE . 241

EVALUATE . 242

Exit Points. 244

EXIT PROGRAM . 245

Expressions, SQL. 246

FD . 247

Field Edits . 248

Field Edit Values. 251

Fields and Flags, Data Communication . 256

Field/Screen Cross Reference (SC02) . 262

FRFM . 264

Functions, SQL . 265

GENERATE . 269

Generator Options. 271

Generation Parameters, Screens. 273

GROUP BY . 278

GSAM Calls . 280
Reference

7

rfpubb.book Page 7 Tuesday, February 19, 2002 9:56 AM
ID Parameters: . 281

IDM-COMMIT . 282

IDM-CONNECT . 283

IDM-DISCONNECT. 284

IDM-IF . 285

IDM-PROTOCOL . 285

IDM-RETURN . 287

IDM-ROLLBACK. 288

IDMS . 288

IDMS DB Sample Programs . 289

IDMS Options . 293

IF/ELSE-IF/ELSE. 294

$IM- Data Communication Calls . 299

$IM-FLD . 301

$IM-FSA . 301

$IM-POS. 303

% INCLUDE . 304

INITIATE . 305

IO . 305

ISPF Dialog Compatibility: with IMS DC, CICS. 306

Job Control Cards . 307

Joins . 307

Keywords . 311

Limits . 319

LINK . 321

LK . 326

Macro/Program Cross Reference (MC01) . 327

MFS Function Keys . 329
Reference

8

rfpubb.book Page 8 Tuesday, February 19, 2002 9:56 AM
MFS Trancode Construction . 330

MID MOD Reorder. 332

MOCK . 333

MOCKUP LINES . 334

Mock-Up Report (RP01). 335

Modified Data Tags, CICS Data Transmission 336

MSG-SW . 337

NTRY . 340

NULL Indicator Field . 349

OCCURS . 349

OPT . 351

OVERPRINT . 352

PAGE LIMIT. 353

Panel Options, ISPF Dialog . 355

PARA and Paragraphs . 356

PERFORM . 359

PF Key Values . 361

Precompiler Options . 364

PROC . 370

Program Control Blocks, IO . 371

Program DB/DC Report (PG02) . 372

Program Definition Report (PG01) . 374

Program Specification Blocks . 375

Project and Group Options . 376

REC . 377

RED . 378

REDEFINES . 379

REFERENCE . 380
Reference

9

rfpubb.book Page 9 Tuesday, February 19, 2002 9:56 AM
REM . 382

REPEAT . 383

Report Mock-Ups . 388

Report Sample Program and Mock-Up . 389

Report Writer Structures . 404

Reports, Application-Generated . 407

Reserved Words . 409

RESET-PFKEY . 411

S-COBOL Structures . 413

Scenario Definition Report (CN01) . 419

Screen Hardcopy/Field Attribute Report (SC01) 420

Screen Redefinition . 424

SCRNLIST . 426

SD . 429

SEARCH . 430

SEND . 431

SOURCE . 438

Special Registers . 440

SPNM . 441

SQL . 441

STOP RUN . 444

STUB . 444

Subselect Clause . 445

SUM . 447

SUPPRESS (IMS DB Option) . 450

SUPPRESS (Report Writer) . 450

SUPRA . 451

SY* Keywords . 452
Reference

10

rfpubb.book Page 10 Tuesday, February 19, 2002 9:56 AM
System Service Calls . 454

TERM . 460

TERMINATE. 461

TP-BACKOUT . 462

TP-COMMAREA . 463

TP-LINKAGE . 468

TP-NULL . 471

TP-PERFORM . 472

TRUE/FALSE . 473

TRUE, FALSE, ALWAYS, NEVER . 475

TYPE . 475

UNION . 480

UNTIL/WHILE . 483

USE BEFORE REPORTING . 485

User Help . 486

USERNAME. 489

VALUE (Data Structure) . 490

VALUE (Report Writer) . 491

Values, Conversion Values, and Value Ranges 493

Variable Length File Support . 494

WRITE ROUTINE . 495

WS . 496

XCTL . 497
Reference

11

rfpubb.book Page 11 Tuesday, February 19, 2002 9:56 AM
++

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Generate a PANVALET ++INCLUDE statement.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 ++ PANVALETmembername

Comment: The preceding section keyword determines the placement of a data
structure in the generated program. Associated section keywords are:

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 WS
 REC WS-INPUT-REC
 WS-IN-PART-NO N8
 WS-IN-DESC X50
 WS-IN-BASE-PRICE N6V2
 01 WS-OUT-REC.
 DS05 WSOUTREC
 ++ PANWSREC

01

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Use the 01 keyword to:

• Define the input and output files in a batch program File Section.

• Define a data structure in Working-Storage or Linkage Section.

• Copy a data structure into the Working-Storage or Linkage Section.

FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)

LK Linkage Section (see LK)
Reference

12

rfpubb.book Page 12 Tuesday, February 19, 2002 9:56 AM
• Define APS Report Writer statements for headings, footers, or detail
lines.

Syntax: Format 1, define input or output files:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IO filename ASSIGN [TO] ...
 ORGANIZATION IS ...
 01 input|outputrecordname PIC clause

Format 2, define a data structure:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 COBOLdatastructure
 [05 COBOLdatastructure]

Format 3, copy a data structure:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 COBOLcopystatement

Format 4, define Report Writer line types:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 [dataname] TYPE [IS] reportgroup
 [NEXT GROUP [IS] number|PLUS number|NEXT PAGE][.]
 [LINE [NUMBER IS] number|PLUS number|NEXT PAGE]
 MOCKUP|M LINE|LINES linenumber1 [THRU linenumberN]
 [OVERPRINT] WHEN "characterstring" AT COLUMN column]
 [SOURCE] [IS] dataname [options]]
 [VALUE] [IS] literal]
 [REFERENCE [IS] dataname PIC[TURE] [IS] picclause
 [options]]
 [SUM|+ [IS] dataname [dataname] ...
 [UPON detailgroup [detailgroup] ...]
 [RESET [ON] [FINAL] dataname]
 [options]]

Comments: • You must provide all necessary COBOL punctuation.

• The following COPY statement formats are available for OS/VS
COBOL. They are not supported by COBOL II, where the LANGLVL
compiler option is set to 1.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 COPY copybookname

 01 dataname COPY copybookname
Reference

RENAMES 13

rfpubb.book Page 13 Tuesday, February 19, 2002 9:56 AM

 01 dataname
 COPY copybookname

 01 dataname COPY copybookname
 REPLACING fieldname1 BY fieldname2

• To write subordinate elementary data telements, include the level
numbers in columns 12 - 72.

• If you use the COBOL/2 compiler, or your copybook contains an
indexed table, enter the SWYS or SYLK keyword in the KYWD
column and the APS statement % INCLUDE, rather than a COBOL
COPY statement. % INCLUDE inserts the copybook into the program
before precompilation, so the APS Precompiler can interpret the
index. See the Customization Facility User’s Guide for more
information.

• The preceding section keyword determines the placement of a data
structure in the generated program. Associated section keywords
are

RENAMES

Category: Data Structure Painter construct (see Data Structures)

Description: Code 66-level RENAMES clauses in your data structures.

Syntax: 66 anytext

Parameters:

Comment: A 66-level variable needs the same or deeper indentation than the data
name it refers to.

FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)

LK Linkage Section (see LK)

anytext Valid COBOL Syntax: for 66-levels.
Reference

14

rfpubb.book Page 14 Tuesday, February 19, 2002 9:56 AM
Example: Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAINTER --------
000001 WORK-RECORD
000002 WORK-RECORD-GRP1
000003 WORK-FIELD-1 XX
000004 WORK-FIELD-2 XXX
000005 WORK-FIELD-3 PIC X(04)
000006 WORK-RECORD-GRP2
000007 WORK-FIELD-4 PIC X(02)
000008 WORK-FIELD-5 PIC X(06)
000009 WORK-RECORD-GRP3
000010 WORK-FIELD-6 PIC X(08)
000011 WORK-FIELD-7 PIC X(02)
000012 66 RECORD-1-REN RENAMES WORK-FIELD-1
000013 ... THRU WORK-FIELD-6

Generated COBOL code:

01 WORK-RECORD.
 05 WORK-RECORD-GRP1.
 10 WORK-FIELD-1 PIC XX.
 10 WORK-FIELD-2 PIC XXX.
 10 WORK-FIELD-3 PIC X(04).
 05 WORK-RECORD-GRP2.
 10 WORK-FIELD-4 PIC X(02).
 10 WORK-FIELD-5 PIC X(06).
 05 WORK-RECORD-GRP3.
 10 WORK-FIELD-6 PIC X(08).
 10 WORK-FIELD-7 PIC X(02).
 66 RECORD-1-REN RENAMES WORK-FIELD-1
 THRU WORK-FIELD-6.

88

Category: Data Structure Painter construct (see Data Structures)

Description: Code 88-level clauses in your data structures.

Syntax: 88 dataname VALUE ’value1’ [THRU ’value2’]
... ’value3’ [THRU ’value4’]
... ’value5’ [THRU ’value6’]
 .
Reference

88 15

rfpubb.book Page 15 Tuesday, February 19, 2002 9:56 AM
 .
 .
... ’valueN’ [THRU ’valueN’]

Parameters:

Comments: • An 88-level variable needs the same or deeper indentation as the
data name it refers to.

• You can code the VALUE clause either

• On the same line as dataname if it fits entirely on that line.

• On its own line and continue it on subsequent lines with the
continuation symbol.

Examples: • Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAINTER --------
000001 WRK1-FIELD-1 X5
000002 88 OPEN-VAL
000003 ... V ’OPEN’ ’BEGIN’
000004 ... ’START’
000005 88 OPEN-FLAG
000006 ... VALUE ’ON’
000007 ... ’YES’

Generated COBOL code:

01 WRK1-FIELD-1 PIC X(5).
 88 OPEN-VAL VALUE ’OPEN’ ’BEGIN’
 ’START’.
 88 OPEN-FLAG VALUE ’ON’
 ’YES’.

• Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAINTER --------
000009 WRK1-FIELD-2 X(04)
000010 88 SUB-LVL1
000011 ... V ’ABCD’ ’EFGH’
000012 ... ’FFFF’ THRU ’MMMM’
000013 ... ’PPPP’ THRU ’ZZZZ’
000014 88 SUB-LVL2
000015 ... V LOW-VALUES

value 88-level value; do not enclose numeric values in
single quotation marks.
Reference

16

rfpubb.book Page 16 Tuesday, February 19, 2002 9:56 AM
Generated COBOL code:

01 WRK1-FIELD-2 PIC X(04).
 88 SUB-LVL1 VALUE ’ABCD’ ’EFGH’
 ’FFFF’ THRU ’MMMM’
 ’PPPP’ THRU ’ZZZZ’.
 88 SUB-LVL2 VALUE LOW-VALUES.

• Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAINTER --------
000016 WRK1-FIELD-3 H
000017 88 SUB-LVL3
000018 ... V -1000 +1000
000019 ... -900 THRU -700
000020 ... +500 THRU +800

Generated COBOL code:

01 WRK1-FIELD-3 PIC S9(4) COMP.
 88 SUB-LVL3 VALUE -1000 +1000
 -900 THRU -700
 +500 THRU +800.

Application Definition Report (AP01)

Category: APS-generated report (see Application Reports)

Description The Application Definition Report displays each component of an
application in a separate report section.

This report consists of the following collection of reports.

• Data Structure Definition Report (DS01) (Data Structure Definition
(DS01))

• Program Definition Report (PG01) (Program Definition Report
(PG01))

• Report Definition Report (RP01)

• Screen Hardcopy/Field Attribute Report (SC01) (Screen
Hardcopy/Field Attribute Report (SC01))
Reference

Application Definition Report (AP01) 17

rfpubb.book Page 17 Tuesday, February 19, 2002 9:56 AM
• Screen Field Edits Report (ED01) (Field/Screen Cross Reference
(SC02))

• Program DB/DC Report (PG02) (Program DB/DC Report (PG02))

Comments: • Produce the Application Definition Report from the Report
Generator, Painter Menu, or Application Painter.

• This report does not provide information about the scenarios that
you create in the Scenario Painter.

Example:
REPORT CODE: REPT APS ENTITY REPORT FACILITY PAGE 1
 CLSAPS.CLS2 01/21/92 09:28
REPORT CRITERIA:
 ALL ASSOCIATED ENTITIES OF THE APPLICATION : TDDEMO

LIBRARY ENTITY
TYPE NAME STATUS Comments:

 AP TDDEMO REPORTED
 PG TDCM REPORTED
 PG TDCS REPORTED
 PG TDME REPORTED
 PG TDOJ REPORTED
 PG TDOM REPORTED
 PG TDOT REPORTED
 PG TDOU REPORTED
 SC TDCM REPORTED
 SC TDCS REPORTED
 .
 .
 .

REPORT CODE: AP01 APS APPLICATION PAINTER PAGE 1
 APPLICATION DEFINITION REPORT 01/21/92 09:28
 CLSAPS.CLS2
SELECTION CRITERIA:
 TDDEMO

APPLICATION: TDDEMO CREATED: 02/15/90
TITLE : UPDATED: 08/30/90
AUTHOR : CLSTR1 DC TARGET: CICS
 DB TARGET: VSAM

-LINE- PROGRAMS SCREENS IO REPORTS DATA STR TY SBSC/PSB USERMACS LOC

000001 TDME TDME IO
000002 TDCM TDCM IO TDDB2
000003 TDPL TDPL IO TDDB2
000004 TDOM TDOM IO TDDB2
000005 TDOT TDOT IO TDDB2
000006 TDOJ TDOJ IO TDDB2
000007 TDOU TDOU IO TDDB2
 .
 .
 .
Reference

18

rfpubb.book Page 18 Tuesday, February 19, 2002 9:56 AM
Application Field Edit Routines

Category: Screen Painter feature (see Field Edits)

Description: Specify additional edits or tests for input or output data.

Procedure: To assign an edit routine, follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 To access the Application Edits screen, select the Application Editing
prompt on any Field Edit screen.

3 Complete the following options.

Option Description

Type Indicate whether this application edit is a
paragraph, subprogram, or APS macro.
Default is P(aragraph).

Name Enter a descriptive name for the
application edit; maximum 32 characters.

Arguments To pass a screen field or error flag, prefix
the name with the screen name and a
hyphen. If the field is located in a list box or
combination box, APS suffixes the name
with (APS-ROW-SUB).

Enter the following arguments separated
by commas and enclose literals in single
quotation marks.

Paragraph Data names or literals that pass to the
paragraph through a PERFORM with
arguments statement in the generated
program.

Subprogram Data names that appear on the CALL USING
statement in the generated program.

APS macros Customization Facility macro terms, literals,
and numeric literals. Do not enclose
arguments with double quotation marks.
Reference

Application Field Edit Routines 19

rfpubb.book Page 19 Tuesday, February 19, 2002 9:56 AM
Alternately, for screen fields, you can select a predefined edit from the
Application Edit List, which is a centralized collection of routines
maintained by your APS Administrator. To do so:

1 On the Application Editing screen, enter appllist listname in the
Command field, where listname is the name of the list of available
edits. See your APS Administrator for the name of the list at your
site. The Application Selection screen displays.

2 Type s before the input or output edit routine you want.

3 Press Enter to select the edit and return to the Application Editing
screen. APS copies the field values from the selected edit routine,
overlaying existing entries. You can modify the selected edit routine
on this screen.

Comments: • You can interrogate the following APS-generated flags and data
fields to determine input data errors.

Execute Before/After
APS Edits

Specify when the program executes this
application edit--before or after the normal
APS field edit routine. Default is b(efore).
See also "Comments:" below.

Paragraph COPYLIB
or APS Macro
USERMACS Member

Specify an associated COPYLIB member or a
paragraph or the associated USERMACS
member name for an APS macro.

Working-Storage
COPYLIB Member

Specify a Working-Storage COPYLIB
member to be included in the program
Working-Storage section.

Option Description

APS-EDITS-PASSED Flag that APS sets to T(rue) if
there are no input errors and
F(alse) if there are input errors
Reference

20

rfpubb.book Page 20 Tuesday, February 19, 2002 9:56 AM
• You can use the following APS-generated fields to code your
application edit routines. The option Execute Before/After APS Edits
determines which field to reference, as shown in the table below.

APS-EDIT-ERRORS-CTR Data field containing the number
of screen fields in error

screenname-fieldname-FLAG Flag that APS sets to T(rue) if an
error occurs and F(alse) if not

Representation Execute Option Name and Format

Input After APS edits Screenname-fieldname.
Internal picture was updated
by any previous field edits.

Input Before APS edits Screenname-fieldname-INPT.
Data field containing any
invalid data entered by the
end user. Edits have not
been performed; data is in
screen input format. Field
length is field length
painted on the screen;
definition is PIC X.

Output After APS Edits Screenname-fieldname-EDIT.
Data was moved to -EDIT by
previous output edits. Data
may contain special symbols.
Default length is field length
painted on the screen;
definition is PIC X.

Output Before APS Edits Screenname-fieldname.
Data was not processed by
previous output edits and is
still in the internal format.
Data in this field moves to
the -EDIT field when an
output format is specified.
Default length is field length
painted on the screen;
definition is PIC X.
Reference

Application Field Edit Routines 21

rfpubb.book Page 21 Tuesday, February 19, 2002 9:56 AM
• APS processes input data from the screenname-fieldname-INPT
field. After the data passes the input edits, the data moves to
screenname-fieldname and takes on the characteristics of the
internal picture. For output, the data moves to the screenname-
fieldname-EDIT field and takes on the characteristics of the output
format specifications.

• Application edit routines execute for a field whether the data
passes or fails field edits, unless you set various switches in the
APFEIN control file (see Control Files). To indicate an error in an
application edit routine, move T to screenname-fieldname-FLAG.
This tells APS to execute error processing; you can display an
additional error message from the APS-EDIT-MESSAGE field.

Input or Output Before or After
APS Edits

(APS-ROW-SUB). This data
field contains the row
number being processed for
fields in a repeated block, or
in a list box or combination
box.

Input or Output Before or After
APS Edits

APS-EDIT-MESSAGE. Data
field that lets you display an
error message in addition to
any you defined in the field
edits for the field. Move a
literal or data name
containing the text into this
field.

Input or Output Before or After
APS Edits

Screenname-fieldname-LEN.
For CICS only. Contains the
length of the field;
definition is PIC X.

Input or Output Before or After
APS Edits

Screenname-fieldname-
ATTR. For CICS only. Contains
the attribute values assigned
to the field; definition is
PIC X.

Representation Execute Option Name and Format
Reference

22

rfpubb.book Page 22 Tuesday, February 19, 2002 9:56 AM
Examples: The following is sample generated code for a screen record with input
and output edits.

01 EMPLOYEE-RECORD.
 05 EMPLOYEE-SALARY-GRP.
 10 EMPLOYEE-SALARY-INPT.
 15 FILLER PIC X(03).
 15 EMPLOYEE-SALARY PIC S9(O5)V99.
 10 EMPLOYEE-SALARY-OUTP REDEFINES
 EMPLOYEE-SALARY-INPT.
 15 EMPLOYEE-SALARY-EDIT PIC $$$,$$9.99.

The following three examples show the generated code when you code
an application edit routine as a paragraph, subprogram, and macro.
Each routine:

• Validates the part number entered in the CUSTOMER-NO field.

• Is invoked during field edit input logic execution.

• Executes After APS Edits.

• Passes the following arguments
*CUSTOMER-NO, *CUST-NO-FLAG, APS-EDIT-MESSAGE

In the first example illustrated below, the edit routine uses the
VALIDATE-CUSTOMER-NO paragraph, which resides in the CUSTPARA
copylib, as shown below.

The VALIDATE-CUSTOMER-NO paragraph receives the SCRN-
CUSTOMER-NO data, verifies it exists, and returns a T(rue) value to
SCRN-CUST-NO-FLAG if the part number is not found. Then, APS checks
Reference

Application Field Edit Routines 23

rfpubb.book Page 23 Tuesday, February 19, 2002 9:56 AM
the SCRN-CUST-NO-FLAG to determine whether an error was found. If
so, the APS-EDIT-MESSAGE text displays on the screen.

PERFORM VALIDATE-CUSTOMER-NO(SCRN-CUSTOMER-NO,
... SCRN-CUST-NO-FLAG, APS-EDIT-MESSAGE)
 .
 .
 .
VALIDATE-CUSTOMER-NO(+WS-CUSTOMER-NO,-WS-ERROR-FLAG,
... WS-MESSAGE)
 DB-OBTAIN REF CUST-RECORD
 ... WHERE CUSTOMER-NO-KEY = WS-CUSTOMER-NO
 IF NTF-ON-REC
 MOVE ’T’ TO WS-ERROR-FLAG
 MOVE ’CUSTOMER NUMBER NOT FOUND ON FILE’
 ... TO WS-MESSAGE
 MOVE ’ ’ TO WS-ERROR-FLAG
 ELSE
 MOVE ’T’ TO WS-ERROR-FLAG
 MOVE ’ABNORMAL RETURN ON PART NBR VALIDATION’
 TO WS-MESSAGE

In the second example, the edit routine uses the CUSTVER subprogram.
The subprogram accepts the arguments into the Linkage Section.

CALL ’CUSTVER’ USING
... SCRN-CUSTOMER-NO,
... SCRN-CUST-NO-FLAG,
... APS-EDIT-MESSAGE

In the third example, the edit routine uses the $VALIDATE-CUSTOMER-
NO macro, which resides in USERMACS CUSTMAC. The $VALIDATE-
CUSTOMER-NO macro receives the SCRN-CUSTOMER-NO as an
argument, verifies it exists, and returns a T(rue) value to SCRN-CUST-NO-
FLAG if the part number is not found. Then, APS checks the SCRN-CUST-
NO-FLAG to determine whether an error was found. If so, the APS-EDIT-
MESSAGE text displays on the screen.

$VALIDATE-CUSTOMER-NO("SCRN-CUSTOMER-NO",
% ... "SCRN-CUST-NO-FLAG",
% ... "APS-EDIT-MESSAGE")
 .
 .
% DEFINE $VALIDATE-CUSTOMER-NO(&CUSTOMER-NO, &ERROR-FLAG,
% ... &MESSAGE)
 $DB-OBTAIN("REF CUST-RECORD",
 % ... <%&CQ WHERE CUSTOMER-NO-KEY = &CUSTOMER-NO&CQ>)
Reference

24

rfpubb.book Page 24 Tuesday, February 19, 2002 9:56 AM
 IF NTF-ON-REC
 MOVE ’T’ TO &ERROR-FLAG
 MOVE ’PART NUMBER NOT FOUND ON FILE’ TO &MESSAGE
 ELSE-IF OK-ON-REC
 MOVE ’ ’ TO &ERROR-FLAG
 ELSE
 MOVE ’T’ TO &ERROR-FLAG
 MOVE ’ABNORMAL RETURN ON CUSTOMER NUMBER VALIDATION’
 ...TO &MESSAGE

Application Painter

Description: Create an application definition by listing all its components in a matrix
that indicates their relationsip to each other. Specify requirements on
the Application Painter screen, as follows:

Field Description and Values

DC Data communications target. Valid targets are CICS, DLG (ISPF Dialog), IMS, ISPF,
MVS (batch). Specify the target as follows:

If application contains... Specify this DC target...

Only online programs Your online DC target.

Only batch programs MVS. In addition, leave each program Screens field
blank.

Both online and batch
programs

Your online DC target. To identify the batch programs,
enter *batch in the Screens field next to each batch
program name.

For a list of valid DB/DC combinations for generating
executable programs, see DB/DC Target Combinations.

DB Database target. Valid values are DLI (or IMS), IDMS, VSAM.

To specify a SQL target, leave the DB field blank or let default to VSAM. Then go
to the Generator Options screen and specify the SQL target.

If your application accesses multiple database targets, specify the DB target as
follows.

If application accesses . .
.

Specify this DB target . . .

Two DB targets,
including VSAM

The non-VSAM target--APS always gives you access to
the VSAM target.
Reference

Application Painter 25

rfpubb.book Page 25 Tuesday, February 19, 2002 9:56 AM
Two or more DB targets,
excluding VSAM

Any DB targets. When you generate the programs, first
generate just the programs of your specified DB target.
Then change the DB target to the next target and
generate just the programs of that next target. For
example, if your application accesses both SQL and IMS
subschemas, generate your SQL programs separately
from your IMS programs.

For a list of valid DB/DC combinations for generating executable programs to run
on various operating systems, see See DB/DC Target Combinations.

Screen
Size

Specify the size of the screen for your application by selecting one of the
following application screen sizes from the Screen Size field.

Application
Screen Size

Dimension Development Screen Size

MOD2 24 x 80 MOD2, MOD3, MOD4, or MOD5

MOD3 32 x 80 MOD3 or MOD4

MOD4 43 x 80 MOD4

MOD5 27 x 132 MOD5

Program Enter program names; maximum eight characters. The first character must be
alphabetic; others can be alphabetic, numeric, or the special characters #, $, or @.
The names all and dummy are invalid.

Screen Associated screen name; eight-character maximum, except for IMS DC and ISPF
Prototyping, which have a seven-character maximum. The first character must be
alphabetic, others can be alphanumeric. For batch programs, enter *batch in the
Screens field, on the same row as the program name. For online programs, enter
the program associated screen name, on the same row as the program name.

IO Specify whether the screen is input-only (i), output-only (o), or input/output (io).
For batch programs, leave the IO field blank.

Report Batch program report mock-up name; eight character maximum. The first
character must be alphabetic or the special characters #, $, or @; others can be any
of these or numeric.

Data St Name of any data structure file that the program will reference; eight character
maximum. The first character must be alphabetic; others can be alphanumeric. If
the program references multiple data structure files, enter their names on
subsequent rows. To make the data structures global, or available to all programs
of the application, enter their names on rows above all programs.

Ty Type of data structure file, indicating the program location where you plan to
include it, as follows.

Field Description and Values
Reference

26

rfpubb.book Page 26 Tuesday, February 19, 2002 9:56 AM
Comments: • You can include procedural subroutines that any program of the
application can reference, known as global stubs. To do so, enter
the stub name in the Program field, and enter *stub in the field.
Regardless of the row where you enter a global stub name, any
program of the application can reference it. See STUB.

WS Working-Storage Section

LK Linkage Section

CA Commarea

Schema Subschema or PSB name; eight character maximum. The first character must be
alphabetic; others can be alphanumeric. To make the subschema or PSB global, or
available to all programs of the application, enter its name on a row above all
programs.

User Mac Name of user-defined macro library file that the program will reference; eight
characters maximum. The first character must be alphabetic; others can be
alphanumeric. If the program references multiple macro library files, enter their
names on subsequent rows. To make the files global, or available to all programs
of the application, enter their names on rows above all programs. The files must
reside in your project.group USERMACS PDS.

Loc Location of the macro library file, indicating the program location where you
plan to invoke its macros, as follows:

T Default; top of program, before Identification Division

B Bottom of program

WT Top of Working-Storage Section

WS Working-Storage Section, after any data structures you include in
the Data Str field

WB Bottom of Working-Storage Section

LT Top of Linkage Section

LK Linkage Section, after any data structures you include in the Data Str
field

LB Bottom of Linkage Section

IO Top of Input-Output Section

FD Top of File Section

RP Top of Report Section

CA Top of Commarea

Field Description and Values
Reference

Application Painter Member Processing Exits 27

rfpubb.book Page 27 Tuesday, February 19, 2002 9:56 AM
• To create a new application definition quickly, you can copy an
existing one and modify it. To do so, use the Create Like function on
the Painter Menu.

• If you are creating a CICS or IMS DC application that accesses SQL or
VSAM databases, and you want to create an application prototype
to execute and test within the APS Prototype Execution facility, set
the DC target to ISPF and the DB target to SQL or VSAM. After
testing the ISPF prototype, change the DB/DC targets to the
production targets, and regenerate the application.

• Deleting a component from the Application Painter matrix removes
it from the application definition, but not from the APS Repository;
the componenet is available to add to other applications. However,
if you delete a component from the Painter Menu, APS removes it
from the APS Repository; you must delete it from all applications
that reference it.

• If you are creating an IMS application that does not access the IMS
message queue, specify MVS as your DC target.

Application Painter Member Processing Exits

Description On the Application Painter, the selection fields next to programs,
screens, reports, and data structures accept the following APS-defined
selection codes.

You can create selection codes to do additional things by writing a
member processing exit subroutine. For example, you could create a
member processing exit that contains logic to archive an entity to tape
when the user-defined selection code T is entered. You can also create

This code... Represents...

ox Select Online Express program

s, e Select or Edit

b Browse

g Generate

r Report

bd BIND
Reference

28

rfpubb.book Page 28 Tuesday, February 19, 2002 9:56 AM
member processing exits to modify or disable the APS-defined selection
codes.

Procedure: To write an Application Painter member processing exit, follow these
steps:

1 Copy the APS-provided member processing exit program template,
A1UXAP01, which resides in the APSPROG PDS. Modify the copy
with your own logic to suit your needs, and generate the program.
Note that in the A1UXAP01 program, a like-named macro library is
included; the $APS-UXAP01-LINK-PARMS macro member of this
library defines the parameters you use in the exit program.

2 Access the APS Administration Configuration screen and define your
member processing exit name.

3 Test your member processing exit. If you get a system abend code
806 from the Application Painter, the exit is not in the system search
path - perhaps you entered the wrong name in step 2, or your exit
did not compile.

4 To make your exit available from any Project and Group, copy the
generated load module to an appropriate load library, such as the
APS software library ISPLLIB2, or any library in the system search
path.

Selection Code Processing
When you enter one or more selection codes on the Application Painter,
the Painter first validates that the selection codes were entered
correctly. Then, if no errors are found, the Painter processes the
selection codes.

You can code logic in an exit program for any of three Application
Painter processing points - during validation, before processing, and
after processing. APS provides the following two structures in the exit
macro and the exit program template respectively, to determine which
function is requested.

P-FUNC-CD X(1)
 88 P-FUNC-CD-VALIDATE V ’V’
 88 P-FUNC-CD-PRE-PROCESS V ’B’
 88 P-FUNC-CD-POST-PROCESS V ’A’
 .
Reference

Application Painter Member Processing Exits 29

rfpubb.book Page 29 Tuesday, February 19, 2002 9:56 AM
 .
 .
EVALUATE P-FUNC-CD
WHEN ’V’
 PERFORM VALIDATE-FUNC
WHEN ’B’
 PERFORM CUSTOM-PREPROCESS
WHEN ’A’
 PERFORM CUSTOM-POSTPROCESS

APS also provides the following variables in the exit macro. To define
your own selection code(s) to the exit program, reference these
variables in your program.

% &APS-UE-SEL-BROWSE = ’B’
% &APS-UE-SEL-BIND = ’BD’
% &APS-UE-SEL-EDIT = ’E’
% &APS-UE-SEL-GEN = ’G’
% &APS-UE-SEL-ONLINE-EXPRESS = ’OX’
% &APS-UE-SEL-REPORT = ’R’
% &APS-UE-SEL-SELECT = ’S’

Validation

The Painter validates each selection code entered. It also calls the exit
program’s validation paragraph once per selection code. In the
paragraph, you can use the following return codes.

Return Code Meaning

&APS-UE-RC-OK All validations for the selection
code are successful; the exit
program should handle this
selection and bypass APS
processing.

&APS-UE-RC-UNKNOWN-SEL-CD The selection code is not user-
defined; APS should handle it.

&APS-UE-RC-CONTINUE The selection code is a standard APS
selection code. Both the exit
program and APS should process
this selection code.

&APS-UE-RC-USER-ERROR The selection code is in error; APS
should stop validation and redisplay
the Application Painter screen for
user correction.
Reference

30

rfpubb.book Page 30 Tuesday, February 19, 2002 9:56 AM
For example:

 /* ***
 /* USER LOGIC TO VALIDATE SELECTION CODES
 /* ***
PARA VALIDATE-FUNC
 /* VALIDATE THE SELECTION CODE...
 IF P-SEL-CD = ’yourcode’
 RETURN-CODE = &UE-RC-OK
 ELSE
 RETURN-CODE = &UE-RC-UNKNOWN-SEL-CD

Preprocessing:

If validation was successful, the Application Painter processes the
selection codes in this order:

For each selection code, the Application Painter checks the return code
set by the exit program during validation. If the return code is &APS-UE-
RC-OK or &APS-UE-RC-CONTINUE, the Application Painter calls the exit
program preprocessing paragraph; otherwise standard Application
Painter processing occurs.

In the exit program preprocessing paragraph, write your custom
preprocessing logic, and then set one of these return codes.

g Generate screens, then programs

bd Bind

r Report

ox Online Express

s, e, b, and user-defined codes Codes processed as they appear on
Application Painter, from top to
bottom, and right to left

Return Code Meaning

&APS-UE-RC-OK Processing of this selection code is
complete.

&APS-UE-RC-CONTINUE The exit program preprocess
paragraph is successful; continue with
standard Application Painter
processing.
Reference

Application Painter Member Processing Exits 31

rfpubb.book Page 31 Tuesday, February 19, 2002 9:56 AM
For each selection code, when the exit program preprocess paragraph
returns &APS-UE-RC-CONTINUE or &APS-UE-RC-POSTPROCESS, the
Application Painter attempts to perform its standard processing. Then,
for &APS-UE-RC-POSTPROCESS, the Application Painter calls the exit
program postprocess paragraph. The call parameter P-APS-STATUS
indicates the success or failure of the standard Application Painter
processing.

Postprocessing:

Use the exit program postprocessing paragraph to execute any action
after the standard Application Painter processing. A common action is
to free resources allocated by the preprocess paragraph. The
postprocessing paragraph should set one of these return codes.

Comments: • A member processing exit can display one or more ISPF screens.

• A member processing exit can invoke one or more subroutines.

• Each member processing exit must return to the Application Painter.

• A member processing exit cannot directly or indirectly invoke the
Application Painter.

• A member processing exit can set a message using the SETMSG
paragraph provided in A1UXAP01. Depending on the circumstances,
a subsequent APS message can override this message.

&APS-UE-RC-POSTPROCESS The exit program preprocess
paragraph is successful; continue with
both standard Application Painter and
exit program postprocessing.

&APS-UE-RC-USER-ERROR The exit program preprocess
paragraph is unsuccessful; continue
processing with the next selection
code.

Return Code Meaning

Return Code Meaning

&APS-UE-RC-OK The exit program postprocessing
paragraph is successful.

&APS-UE-RC-ERROR The exit program postprocessing
paragraph failed.
Reference

32

rfpubb.book Page 32 Tuesday, February 19, 2002 9:56 AM
Application Reports

Description: APS provides a set of reports that help you understand your application
and its various components. Use these reports as you develop an
application to determine the status of your work and the tasks left to
complete. Some reports help you to troubleshoot problems in an
application that you are developing, or to determine the impact of a
proposed change. Others help you to verify the results of your work.
Once you have fully implemented an application, use the APS reports to
document it so that developers who later maintain or enhance the
application can easily understand it in detail.

You can produce reports on an entire application, on selected
components, or on selected members of components. You can produce
reports from the Report Generator, Painter Menu, Application Painter,
or Documentation Facility, as follows.

Report Available from

Application Definition (AP01) lists and
describes all components of an application
except the scenario prototype. See
Application Definition Report (AP01).

Painter Menu
Application Painter
Report Generator

Component List (MS01) catalogs and totals
the components for each painter. See
Component List (MS01).

Documentation Facility

Data Structure Definition (DS01) lists and
describes structures that you create in the
Data Structure Painter. See Data Structure
Definition (DS01).

Painter Menu
Application Painter
Report Generator

DDIFILE (DB01) describes the contents of the
file that contains information about your
database, formatted to APS specifications.
See DDIFILE Report (DB01).

Documentation Facility

Entity Content (MS02) lists summary
information for each application component.
See Entity Content Report (MS02).

Documentation Facility
Reference

Application Reports 33

rfpubb.book Page 33 Tuesday, February 19, 2002 9:56 AM
Entity Cross Reference (MD01) cross
references and totals application
components. See Entity Cross Reference
(MD01).

Documentation Facility

Entity Parts List (EN01) catalogs selected parts
of one or more application components. See
Entity Parts List (EN01).

Documentation Facility

Entity Search Utility (GS01) lets you create
reports on application components that meet
the selection criteria that you specify. See
Entity Search Utility Report (GS01).

Documentation Facility

Entity Use (EN02) lists components that copy,
include, or otherwise use the target
component. See Entity Use Report (EN02).

Documentation Facility

Field/Screen Cross Reference (SC02) lists
application screens along with their I/O and
text fields. See Field/Screen Cross Reference
(SC02).

Documentation Facility

Macro/Program Cross-Reference (MC01) lists
macros and the programs that use them. See
Macro/Program Cross Reference (MC01).

Documentation Facility

Mock-Up (RP01) lists and displays report
mock-ups as painted in the Report Mock-Up
Painter. See Mock-Up Report (RP01).

Painter Menu
Application Painter
Report Generator

Program DB/DC (PG02) lists the screens and
the subschemas or PSBs used by a program.
See Program DB/DC Report (PG02).

Documentation Facility

Program Definition (PG01) provides a
printout of programs created in APS. See
Program Definition Report (PG01).

Painter Menu
Application Painter
Report Generator

Scenario Definition (CN01) describes
components created in the Scenario
Prototype Painter. See Scenario Definition
Report (CN01).

Painter Menu
Application Painter
Report Generator

Report Available from
Reference

34

rfpubb.book Page 34 Tuesday, February 19, 2002 9:56 AM
Procedures: Use the following procedures to produce APS reports from the Report
Generator, Painter Menu, Application Painter, and Documentation
Facility.

Report Generator

Produce reports from the Report Generator following these steps.

1 On the Painter Menu, enter in the Type field the component type
that you want to report on - ap(plication), cn (scenario), ds (data
structure), pg (program), rp (report mock-up), or sc(reen).

2 Leave the Member field blank.

3 Enter report in the Command field and press Enter to display the
Report Generator screen.

4 Enter one of the following selection criteria.

• To report on all members of all component types, type 1 in the
Option field. Make sure that all entry fields are blank on the
screen.

• To report on all members of the one component type, type 2 in
the Option field. Leave the value that displays in the Library
field.

• To report on a specific member of a component, type 3 in the
Option field. Leave the value that displays in the Library field,
and enter the component’s member name in the Member Name
field.

• To report on a range of members in a component, type 3 in the
Option field. Enter the component type in the Library field and
the value range of the members you want to report on in the
Range Greater and Range Less fields.

5 Press Enter to submit a job to produce the report.

Screen Hardcopy/Field Attribute (SC01)
displays the components of a screen as
painted in the Screen Painter as well as field
attribute and field edit information. See
Screen Hardcopy/Field Attribute Report
(SC01).

Painter Menu
Application Painter
Report Generator

Report Available from
Reference

Application Reports 35

rfpubb.book Page 35 Tuesday, February 19, 2002 9:56 AM
Painter Menu

Produce reports from the Painter Menu following these steps.

1 In the Type field, enter the component type that you want to report
on - ap(plication), cn (scenario), ds (data structure), pg (program), rp
(report mock-up), or sc(reen).

2 In the Member field, enter the member name that you want to
report on.

3 Enter report in the Command field and press Enter. The Print Report
screen displays.

4 Press Enter to submit a job to generate the report.

Application Painter

Produce reports from the Application Painter following these steps.

1 To report on all members of all components, or all members of a
specific component, do one of the following.

• Type report in the Command field to report on all members of
all components of an application.

• Enter report componenttype all in the Command field to report
on all members of a specific component. Componenttype can be
ap(plication), cn (scenario), ds (data structure), pg (program), rp
(report mock-up), or sc(reen).

2 To report on a specific member of a component, do one of the
following.

• Enter report componenttype componentname in the Command
field.

• Type r next to the component name in the Application Painter
matrix.

3 Press Enter to submit a job to generate the report.

Documentation Facility

Produce reports from the Documentation Facility following these steps.

1 From the APS Main Menu screen, enter option 2 in the Option field.
The Dictionary Services screen displays.
Reference

36

rfpubb.book Page 36 Tuesday, February 19, 2002 9:56 AM
2 From the Dictionary Services screen, enter option 3 in the Option
field. The Documentation Facility screen displays.

3 Select the desired report from the Actions listing on the action bar
or enter the applicable option number in the Option field. A
selection criteria screen displays for the selected report.

4 Enter any selection criteria. See the individual report descriptions
for details.

5 Press Enter to submit a job to generate the report.

Comments: • Although the procedures for producing reports from the Painter
Menu and the Report Generator are very similar, the Report
Generator offers more flexibility. On the Painter Menu you can
report on specific component members, while the Report Generator
lets you report on any range of component members that you
specify.

• Make sure that the current Project and Group contain the
application entities you want to report on. If you want to change
your Project\Group, do the following. Alternatively, from the APS
Main Menu, select option 0, Options. The APS Options Menu
displays. Select option 2, Project Group Environment. Enter the
desired Project and Group values and press PF3 to return to the APS
Main Menu.

• Set up job card information so that you can submit jobs to generate
reports. To do so, from the APS Main Menu, select option 0 and then
option 6, Job Card Options. Alternatively, enter opt in the
Command field.

• To set the job class, from the APS Main Menu, select option 0 to
invoke the Generator Options panel. Then select option 1 and
reference the job card you created.
Reference

APSMACS Rule Library 37

rfpubb.book Page 37 Tuesday, February 19, 2002 9:56 AM
APSMACS Rule Library

Description: Contains macros used by APS during generation. Place user macros in
project.group.USERMACS.

Note: This feature is closely associated with the Control Files feature.
See Control Files.

Category: APS library.

Rule Name Usage

A1CMLIB Endevor Configuration Management

A1UXAP01 Application Painter User Exit

APAUTOED Character based Automatic Edits

APBTCHTP Batch Generator

APCICSTP CICS Generator

APCMSCAN TCP/IP Generator

APDB2DB SQL Generator (all SQL database types)

APDLGMAC, APDLGTP ISPF Dialog Generator

APFEDCLR, APFEMACS Field Edits

APHLPMAC Online Help

APIDMSPT IDMS Pass Thru Generator

APIDMSTP IDMS DC Generator

APIMSDB IMS DB Generator

APIMSTP IMS/TM Generator

APMSGADB Database Generator Errors (all database
types)

APMSGBTC Batch Generator Messages

APMSGCIC CICS Messages

APMSGDB2 SQL Generator Messages (all SQL database
types)

APMSGDCL IMS Database Messages

APMSGDLG DLG Messages
Reference

38

rfpubb.book Page 38 Tuesday, February 19, 2002 9:56 AM
APMSGHLP User Help Messages

APMSGIDB, APMSGIDC IDMS Generator Messages

APMSGIMS IMS Generator Messages

APMSGMDC Character based TP messages (CICS, IMS)

APMSGVSM VSAM Generator Messages

APPCVSM VSAM Generator

APPIPMAC TCP/IP Generator

APSBASE APS Base (all targets)

APSCRGEN Character based Screen Generator

APSDBCMD Database Generator (all database types)

APSUBSCH Subschema Processor

APVBXMAC Visual Basic Extension (VBX) Generator

APVSMCIC VSAM Generator (CICS only)

APVSMDB VSAM Generator (all platforms)

APVSMMVS VSAM Generator (batch)

DCLMACS IMS DB and VSAM Generator

DDIAMS VSAM IDCAMS Generator (mainframe only)

DXPG02 PG02 (Program Painter) Report Generator

IDMDBMAC IDMS DB Generator

IDMPROTO IDMS Messages

IMSDBMAC, IMSPHYS IMS DB Generator

SSMXPG02 PG02 (Specification Editor) Report Generator

VSMDBMAC VSAM Generator

VSMPHYS VSAM Generator (all platforms)

Rule Name Usage
Reference

AT END/INVALID KEY 39

rfpubb.book Page 39 Tuesday, February 19, 2002 9:56 AM
AT END/INVALID KEY

Category: S-COBOL structure (see S-COBOL Structures)

Description: Test the END-OF-FILE or AT END condition for files accessed sequentially,
and test the INVALID KEY condition for files accessed randomly.

Syntax: conditionalverb [AT] END ON filename
 INVALID [KEY] ON
 statementblock

Comments: • S-COBOL defines 05 filename - END PIC x and 05 filename - INV PIC x
as flags for the AT END and INVALID KEY conditions for each file.

• END ON filename and INVALID ON filename are 88-level file status
condition names that S-COBOL provides with the AT END and
INVALID KEY flags. You can use these as a condition in any
conditional statement.

• Flag setting occurs when the file is accessed by a READ, WRITE,
START, etc., statement and before the AT END ON/INVALID KEY ON
conditional is valid.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----
 PARA MAIN-LOGIC
 OPEN INPUT MASTER-FILE
 REPEAT
 READ MASTER-FILE INTO MASTER-REC
 ... INVALID KEY
 MASTER-REC = HIGH-VALUES
 ELSE-IF MASTER-TYPE = ’A’
 PERFORM PROCESS-TYPE-A
 ELSE-IF MASTER-TYPE = ’C’
 PERFORM PROCESS-TYPE-C
 ELSE
 PERFORM PROCESS-OTHER-TYPES
 UNTIL INVALID KEY ON MASTER-FILE
 CLOSE MASTER-FILE
 STOP RUN
Reference

40

rfpubb.book Page 40 Tuesday, February 19, 2002 9:56 AM
ATTR

Category: Data communications call (see Data Communication Calls)

Description: Modify the screen I/O field attributes attributes at run time. To reset all
screen field attributes to their original painted values, see CLEAR-ATTRS.

Syntax: ISPF Prototyping

[TP-]ATTR screenname POS fieldname[(subscript)]

CICS, IMS DC, and ISPF Dialog

[TP-]ATTR screenname
... attribute1[+attribute2...]
... fieldname[(subscript)][+fieldname[(subscript)] ...]

Keywords attribute Specify one or more attributes as follows.

BRT Bright character images

NORM Normal character images

DARK Suppress character display

MDTON Enable modified data tags (CICS only)

MDTOFF Disable modified data tags (CICS only)

NUM[LOCK] Enable numeric locking (not applicable
for DDS)

NOLOCK|
NUMOFF

Disable numeric locking (not applicable
for DDS)

POS[ITION] Position the cursor at the first field in the
string (not applicable for DDS)

PROT Specify write-protection

ASKIP Specify write-protection (not applicable
for DDS)

UNPROT|NO
PROT

Cancel write-protection

COLSEP Specify column separator (DDS only)
Reference

ATTR 41

rfpubb.book Page 41 Tuesday, February 19, 2002 9:56 AM
Comments: • When redefining a screen, use the original name.

• Code only as many fieldnames as can fit on a single line. To code
more field names, code another ATTR.

• For character-based applications, to modify color or highlighting,
set the Extattr Modifiable field to Y in the Screen Painter Screen
Generation Parameters: screen.

• You can code attributes that are not supported, such as when
prototyping, without causing an error. They are ignored at
generation/execution time.

DET Enable light pen detection

NODET|DET
OFF

Disable light pen detection

Color Specify one of the following character
image colors:

BLUE | BL
GREEN | GN
PINK | PK
TURQ | TQ
DEFCOL (default)
NEUTRAL | NU
RED | RD
YELLOW | YL

Highlighting Specify one of the following character
highlights:

BLINK
NOBLINK
RVID
NORVID
UNDER
NOUNDER

Blinking cursor
Nonblinking cursor
Reverse video
Normal video
Underlining
No underlining

fieldname
[(subscript)]

Screen field name(s). Code only the field name, not its
screen name prefix; code the field subscript if
applicable.

screenname Screen name; value must be literal (maximum 8
characters).
Reference

42

rfpubb.book Page 42 Tuesday, February 19, 2002 9:56 AM
Examples: • Position the cursor to a specific field.

ATTR SCRA POS SS-NUM

• Change the intensity of a field.

ATTR SCRA BRT EMPL-NAME

• Apply multiple attributes to multiple fields.

ATTR SCRA PROT+BRT SS-NUM+EMPL-NAME

• If fieldname is part of a repeated block, it must be subscripted and
the subscript included with the field name as passed to ATTR. The
following example depicts SOC-SEC-NUM as part of a repeated
block.

ATTR SCRA BRT+POS SOC-SEC-NUM(LINE-CTR)

Attributes, Screen Fields

Category: Screen Painter feature

Description: Assign field attributes by modifying the default attribute values for
your text and I/O fields. To modify screen field attributes at run time,
see ATTR and CLEAR-ATTRS.

Valid attribute values for screen fields on the Field Attribute screens are
the following.

Attribute Description and Values

Name I/O field name; maximum 16 characters. Text fields do
not have names because programs do not reference
them. If you are retargeting an APS application to
OS400, your field names can be only 10 characters long.

Hints:

• If you give a screen field the same name as its
corresponding database field, APS Online Express
automatically maps the relationship for you,
prefixing the field name with the screen name;
otherwise you must type the database field names
in your program.
Reference

Attributes, Screen Fields 43

rfpubb.book Page 43 Tuesday, February 19, 2002 9:56 AM
• If the same field appears on several screens, give it
the same name on each screen. APS lets you pass
data between identically named fields on different
screens during scenario prototyping and ISPF
prototyping.

Length Display field only; to change field length, move the
cursor to the Xs designating the field and type in your
changes. You can space over or delete the Xs
representing the field, or extend the field with more
Xs.

Intensity B Bright

N Normal

D Dark

Type U Unprotected (default); field is for both input
and output.

P Protected; field is output only.

MDT Applies to IMS and CICS only. The modified data tag
tells the terminal whether to return field data. When
this tag is On for a field, the terminal always sends back
data; when Off, the terminal returns data only if the
user changes the data.

On Default. Always send data, whether or not
the end user modifies field; default for I/O
fields.

Off Send data only when end user modifies field;
default for text fields.

When you use field edits with an update program:

• For IMS, always set the tag On, Otherwise, results
are unpredictable.

• For CICS, if you set the tag Off, you must set some
variables in the CTRL file; otherwise, results are
unpredictable. See Control Files.

Value Initial value for screen field; maximum is field length or
27 characters, whichever is less.

APS edits Display field indicating if any field edits were assigned
to the screen field.

Attribute Description and Values
Reference

44

rfpubb.book Page 44 Tuesday, February 19, 2002 9:56 AM
Num Lock On

Off

Activate keyboard numeric shift lock

Deactivate numeric shift lock (default)

See also Comments.

Light Pen On

Off

Light pen detectable.

Not light pen detectable (default).

Init cursor No

Yes

Do not position cursor on this field when the
program sends the screen. Default for all but
the first I/O field.

Position cursor on this field. Default for first
I/O field.

If you change cursor positioning by setting a new field
to Yes, you must change the previous "yes" field to No.

By default Online Express positions the cursor on the
function field for the non-repeated record block data.
To override the default with the field you select here,
blank out the Position Cursor on Field field with spaces
on the Online Express Program Definition screen.

Color B Blue

G Green

N Neutral

P Pink

R Red

T Turquoise

Y Yellow

Highlight B Blinking

U Underline

R Reverse video

Modify IMS only.

No

Yes

Program cannot modify extended attributes
at run time (default).

Program can modify extended attributes.
APS generates the extra attribute bytes
required.

See also "Comments" below.

Attribute Description and Values
Reference

Attributes, Screen Fields 45

rfpubb.book Page 45 Tuesday, February 19, 2002 9:56 AM
Comments: • Under ISPF Prototyping, you cannot assign both the Protected and
Dark attributes to I/O fields.

• Turning the numeric keyboard locking attribute on does not ensure
only numeric data is entered, because it is terminal dependent.

• The Modify Extended Attributes attribute works in conjunction with
the EXATTR MODIFBLE parameter on the Screen Generation
Parameters: screen. If you set that parameter to F(alse), APS ignores
the Modify attribute. If you set the parameter to T(rue), APS
searches your screen to find which fields have the Modify attribute
on.

• To define a field to accept an MFS system literal, you give it the
name of the literal, preceded by an asterisk (*). For example, for a
field to contain the system literal DATE2, the field name should be
*DATE2. When a field is used as a system literal, it is unavailable to
the program and does not have modifiable attributes. See your MFS
documentation for valid system literals.

Format For KANJI use only. Format field characters for a
double-byte character set (DBCS) terminal.

blank Single-byte characters only (default)

D Double-byte characters only

M Single- and double-byte characters
combined

Ruledline For KANJI use only. Place lines around the field on a
DBCS terminal, as follows.

spaces No lines

B Surround field

R Right side of field

L Left side of field

O Over field

U Under field

00-0F See "Comments" below.

Attribute Description and Values
Reference

46

rfpubb.book Page 46 Tuesday, February 19, 2002 9:56 AM
• Using the values 00 through 0F for the KANJI ruled line attribute,
surround the field as follows.

Bind and Translate Options, SQL

Compatibility SQL DB targets

Description: Define bind options for DB2 application and program generation.

Procedure 1 From the APS Options Menu enter option 5 in the Command field.
Alternatively, from any APS screen enter opt 5 in the Command or
Option field. The APS Bind Options screen displays.

Value Under Right Over Left

00 Equivalent to spaces

01 X Equivalent to U

02 X Equivalent to R

03 X X

04 X Equivalent to O

05 X X

06 X X

07 X X X

08 X Equivalent to L

09 X X

0A X X

0B X X X

0C X X

0D X X X

0E X X X

0F X X X X Equivalent to B
Reference

Bind and Translate Options, SQL 47

rfpubb.book Page 47 Tuesday, February 19, 2002 9:56 AM
2 Select Bind and translate options as described below.

Field Description and Values

DB2 System Name Specify the appropriate name for your site.
Default: DB2.

Plan Name Specify the plan name you use when you
Bind an application. If you leave this field
blank, the default depends upon your use of
the BIND command in the Application
Painter.

Owner of Plan
(Authid)

Leave this field blank or specify a primary or
secondary authorization ID of the BIND.

Qualifier Leave this field blank or specify the implicit
qualifier for the unqualified table names,
views, indexes, and aliases contained in the
plan.

Action Specify the bind action to be executed. Valid
values: add or replace.

Retain Execution
Authority

Specify Yes if you specified REPLACE in the
BIND ACTION field. Otherwise specify No.

Isolation Level Valid values: rr or cs.

Plan Validation Time Valid values: run or bind.

Explain Path
Selection

Yes Activates the DB2 EXPLAIN function.

No Does not activate the function.

Resource Acquisition
Time

Valid values: use or allocate. If you enter
ALLOCATE, you must enter DEALLOCATE in
the Resource Release Time field.

Resource Release
Time

Valid values: commit or deallocate. The
value you enter in this field depends on the
value you entered in the Resource
Acquisition Time field.

Defer Prepare Yes Generates the keyword
DEFER(PREPARE), which defers the
prepare statement referring to a
remote object.

No Default.
Reference

48

rfpubb.book Page 48 Tuesday, February 19, 2002 9:56 AM
Example:

Comments: • To reinstate the defaults defined for your site, enter reset in the
Option field.

• For detailed explanations of these fields, see the IBM DB2
Application Programing Guide.

Cache Size Specify the size (in bytes) of the
authorization cache to be acquired in the
EDMPOOL for the plan. Valid values: 0 to
4096.

Data Currency Yes Data currency is required for
ambiguous cursors.

No Data currency is not required for
ambiguous cursors.

Current Server Leave this field blank or specify a connection
to a location before the plan runs.

Message Flag Specify which messages display. Valid values:
I, W, E, C, or blank.

Field Description and Values
Reference

CA 49

rfpubb.book Page 49 Tuesday, February 19, 2002 9:56 AM
CA

Category Program Painter and Specification Editor keyword (see Keywords)

Description: Redefine the TP-USERAREA field of the Commarea. To pass data
between programs, see TP-COMMAREA.

Syntax: • Format 1:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 CA datastructure

• Format 2:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 CA05 COBOLdatastructure

• Format 3:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 CADS datastructurename

Comments: • All formats generate an 05-level REDEFINES TP-USERAREA for the
TP-USERAREA data structure and all other data elements at the
same indentation level.

• When using Formats 1 and 3, code the data structure in the Data
Structure Painter format; when using Format 2, code in COBOL
format.

• A CA keyword in a batch program is not applicable and is ignored.

• For IMS, ISPF Dialog, and CICS programs, Commarea data structures
are generated in Working-Storage; for prototyping under ISPF, they
are generated in Linkage.

• &TP-USER-LEN controls the size of TP-USERAREA--for CICS, the
default is 80 bytes; for IMS and ISPF Dialog, the default is zero.
Change the size of this area by coding % &TP-USER-LEN=nnn, with a
length greater than zero. Code this variable with the SYM1 or SYM2
keyword.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IO INPUT-FILE ASSIGN TO UT-S-INPUT
 IO OUTPUT-FILE ASSIGN TO UT-S-OUTPUT
Reference

50

rfpubb.book Page 50 Tuesday, February 19, 2002 9:56 AM
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 01 INPUT-REC PIC X(80).
 DS01 INPUTREC
 FD OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 REC OUTPUT-REC X80
 01 OUTPUT-REC-R REDEFINES OUTPUT-REC.
 ...COPY OUTREC.
 CA CA-INPUT-REC
 CA-IN-PART-NO N8
 CA-IN-DESC X50
 CA-IN-BASE-PRICE N6V2
 CADS CAOUTREC

CCODE

Compatibility IMS DB target

Description: Use CCODE to include additional IMS command codes in DB-OBTAIN,
DB-MODIFY, DB-PROCESS, and DB-STORE.

Syntax: Valid IMS CCODEs are:

APS generates the following IMS CCODEs; do not code them yourself.

P Establish parentage at this level.

Q Enqueue the segment.

U Maintain current position at this level.

- Null command code.

D Put segment in I/O area (generated by REC).

F Locate first occurrence (generated by FIRST).

L Locate last occurrence (generated by LAST).

N Do not replace segment (generated by REF).

V Maintain current position at this level (generated by
CURRENT).
Reference

Checkin 51

rfpubb.book Page 51 Tuesday, February 19, 2002 9:56 AM
For more information, refer to the applicable IMS manuals.

Comments: • Most IMS command codes are generated by the call keywords; any
command code you specify with the CCODE keyword is added to
these.

• Use CCODE carefully, because the command codes you specify with
it are not validated by the APS/IMS DB Generator.

Example: Retrieve and enqueue RECORD-A and make it unavailable to other
processing until the program terminates or explicitly frees the record
with a checkpoint call.

DB-OBTAIN REC RECORD-A
... WHERE KEY-A = WS-KEY-A CCODE ’Q’
... REC RECORD-B
... WHERE KEY-B = WS-KEY-B
... VIEW PCBNAME RESET

Checkin

Category ENDEVOR Interface feature

Description: Add to or update the ENDEVOR library with an APS component from an
APS Project Group. Alternatively, sign in a component at check in,
without adding to or updating the ENDEVOR library. To retrieve a
member from the library, see Checkout.

From the APS/ENDEVOR Version Control Menu, select option 1, Checkin.
Alternatively, enter CI in the Command field on any APS screen.

Specify requirements on the Checkin screen, as follows.

Field Description and Values

Entity Type Entity type of the APS component to check in.
Valid values are:

ap Application Painter component in
APSAPPL plus its related component in
APRAPPL
Reference

52

rfpubb.book Page 52 Tuesday, February 19, 2002 9:56 AM
cn Scenario Painter component in
APSCNIO

ds Data Structure Painter component in
APSDATA

ox Online Express component in APSEXPS

pg Program Painter component in
APSPROG plus its related component in
APRPROG

rp Report Mock-up Painter component in
APSREPT

sc Screen Painter component in APSSCRN

For other APS component types in your
Project.Group, specify a data set name, such as
USERMACS and DDISYMB.

Member Component name to check in, or leave the
Member field blank to select from a member
list.

System ENDEVOR System name, if it differs from the
default System name for your current APS
Project.Group.

Subsystem ENDEVOR Subsystem name, if it differs from the
default Subsystem name for your current APS
Project.Group.

Comment Text comment for the check in.

CCID ENDEVOR CCID for the check in.

Bypass Gen Processor Specify yes to bypass the associated ENDEVOR
Generate Processor.

Delete Input Source Specify yes to delete the component from the
APS Project.Group.

Processor Group Name of the ENDEVOR Processor Group.

Override Signout Specify yes to override an existing signout. You
must have authority to do so.

Signin Only Specify yes to Signin only, releasing a previous
signout of the component issued with your user
ID; the Add or Update action is not executed.

Stage ENDEVOR Stage number for signin.

Field Description and Values
Reference

Checkout 53

rfpubb.book Page 53 Tuesday, February 19, 2002 9:56 AM
Checkout

Category ENDEVOR Interface feature

Description: Retrieve and, by default, sign out a revision from a controlled member
of the ENDEVOR library to an APS Project Group so that you can modify
it. To add or update the library, see Checkin.

From the APS/ENDEVOR Version Control Menu, select option 2,
Checkout. Alternatively, enter CO in the Command field on any APS
screen.

Specify requirements on the Checkout screen, as follows.

Component Parts For checking in AP and PG component type
components. Valid values are:

none Default. Process only the component
specified in the Member field.

all Process the component specified in the
Member field and all its associated
component parts, or components.

list Display the Component Types Selection
screen, to select the associated
component types for processing.

APS submits a batch job to perform the check in
when some or all component parts are checked
in with the component specified in the Member
field.

Field Description and Values

Field Description and Values

Entity Type Component Type of the component to check
out. Valid values same as for Checkin.

Member Member name to check out, or leave the
Member field blank to select from a member list.
Reference

54

rfpubb.book Page 54 Tuesday, February 19, 2002 9:56 AM
System ENDEVOR System name, if it differs from the
default System name for your current APS
project.group.

Subsystem ENDEVOR Subsystem name, if it differs from the
default Subsystem name for your current APS
Project.Group.

Stage ENDEVOR Stage number of the member to
check out.

Version Default to the current revision. You can
optionally override this value with another
version number.

Level Default to the current level. You can optionally
override this value with another level number.

Comment Text comment for the check out.

CCID ENDEVOR CCID to associate with the check out.

No Signout Specify yes to check out and browse the
member without signing it out to your user ID.

Replace Member Specify yes to overlay an existing member in the
APS project.group.

Override Signout Specify yes to override an existing Signout by
another user. You must have authority to do so.

Component Parts For checking out AP and PG component type
components. Valid values are:

none Default. Process only the component
specified in the Member field.

all Process the component specified in the
Member field and all its associated
component parts, or components.

list Display the Component Types Selection
screen, to select the associated
component types for processing.

APS submits a batch job to perform the check in
when some or all component parts are checked
in with the component specified in the Member
field.

Field Description and Values
Reference

CIC-ADDRESS 55

rfpubb.book Page 55 Tuesday, February 19, 2002 9:56 AM
CIC-ADDRESS

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Use with the TP-LINKAGE call (TP-LINKAGE) to access CICS storage areas.

Syntax: CIC-ADDRESS option(linkdataname) [option(linkdataname) ...]

Parameters:

Example: Pass information to the application program. Set the Linkage Section
data area (LK-CWA) in the current program to the address of the CWA
for access.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK TP-LINKAGE LK-CWA
 LK01 LK-CWA PIC X(200).
 NTRY CIC-ADDRESS CWA(LK-CWA)

CIC-ASSIGN

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Obtain values outside the program and assign them to a Working-
Storage data area in the current program.

option CWA Common Work Area

TCTUA Terminal Control Table User Area

TWA Transaction Work Area

CSA Common Storage Area (z/OS target only)

EIB Execute Interface Block (z/OS target only)

linkdataname 01-level Linkage Section data area identical to the
linkdataname in the associated TP-LINKAGE call.
Reference

56

rfpubb.book Page 56 Tuesday, February 19, 2002 9:56 AM
Syntax: CIC-ASSIGN CICSoption(dataarea) [CICSoption(dataarea)....]
... [ERROR(errorpara)]

Parameters:

Example: Obtain a value outside the application program and assign it to a user-
defined area.

CIC-ASSIGN APPLID(WS-APPLID)
... ERROR(ERROR-PARA)

CIC-CANCEL

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Cancel a previously issued CIC-DELAY (See CIC-DELAY) or CIC-START (See
CIC-START).

Syntax: CIC-CANCEL [REQID(name)]
... [TRANSID(name)]
... [SYSID(name)]
... [ERROR(errorpara)]

Parameters:

option Valid CICS option. See your CICS reference
manual for more information.

(dataarea) COBOL data name containing the result of the
call.

(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

REQID(name) Unique call name; can be a literal or COBOL data
name (maximum 8 characters).
Reference

CIC-DELAY 57

rfpubb.book Page 57 Tuesday, February 19, 2002 9:56 AM
Example: Cancel an activity invoked by a CIC-START.

CIC-CANCEL TRANSID(’TRAN’) ERROR(ERROR-PARA)

CIC-DELAY

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Suspend task processing for a prescribed time interval.

Syntax: CIC-DELAY [REQID(name)]
... [INTERVAL(hhmmss)|TIME(hhmmss)]
... [ERROR(errorpara)]

Parameters:

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).

TRANSID(name) Transaction code identifying the program where
control returns; can be a literal (maximum 4
characters) or COBOL data name (minimum 5
characters).

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INTERVAL(hhmmss) Time interval between issuing and executing a
call. Hhmmss can be replaced by zero, a decimal
constant, or a COBOL data name defined as PIC
S9(07) COMP-3.

REQID(name) Unique call name; can be a literal or COBOL data
name (maximum 8 characters).

TIME(hhmmss) Expiration time for the DELAY function. Hhmmss
can be replaced by a decimal constant or a COBOL
data name defined as PIC S9(07) COMP-3.
Reference

58

rfpubb.book Page 58 Tuesday, February 19, 2002 9:56 AM
Examples: Suspend task processing for a 5-minute interval; let another task cancel
this activity (UNIQCOM command).

CIC-DELAY INTERVAL(500) ERROR(ERROR-PARA) REQID(’UNIQCOM’)

Suspend task processing until 1:30 a.m.

CIC-DELAY TIME(013000) ERROR(ERROR-PARA) REQID(’UNIQCOM’)

CIC-DELETEQ-TD

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Delete all transient data associated with a predefined transient data
queue.

Syntax: CIC-DELETEQ-TD QUEUE(name)
... [SYSID(name)]
... [ERROR(errorpara)]

Parameters:

Example: Delete all the intrapartition transient data stored in storage queue
’TDAQ’.

CIC-DELETEQ-TD QUEUE(’TDAQ’) ERROR(ERROR-PARA)

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).
Reference

CIC-DELETEQ-TS 59

rfpubb.book Page 59 Tuesday, February 19, 2002 9:56 AM
CIC-DELETEQ-TS

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Delete all temporary data and free all storage associated with a
temporary storage queue.

Syntax: CIC-DELETEQ-TS QUEUE(name)
... [SYSID(name)]
... [ERROR(erropara)]

Parameters:

Example: Delete all the data stored in temporary storage queue ’TSAQ’.

CIC-DELETEQ-TS QUEUE(’TSAQ’) ERROR(ERROR-PARA)

CIC-FREEMAIN

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Release storage previously acquired by a CIC-GETMAIN (See CIC-
GETMAIN).

Syntax: CIC-FREEMAIN DATA(linkdataname)

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).
Reference

60

rfpubb.book Page 60 Tuesday, February 19, 2002 9:56 AM
Parameters:

Example: Release the main storage of LK-STORAGE-AREA.

CIC-FREEMAIN DATA(LK-STORAGE-AREA)

CIC-GETMAIN

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Obtain and initialize main storage. To release storage, see CIC-
FREEMAIN.

Syntax: CIC-GETMAIN SET(linkdataname)
... LENGTH(value)|FLENGTH(value)
... [INITIMG(value)]
... [ERROR(errorpara)]

Parameters:

linkdataname 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INITIMG(value) Initialize storage area. Value is 1 byte; can be a
literal or COBOL data name.

FLENGTH(value) Applies to the z/OS target only.
Specify length as a full word value.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

SET(linkdataname) 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.
Reference

CIC-LOAD 61

rfpubb.book Page 61 Tuesday, February 19, 2002 9:56 AM
Example: Obtain an area of main storage of the length specified in the Working-
Storage data area (WS-LENGTH). Specify initialization value (WS-BLANK)
for the acquired main storage.

CIC-GETMAIN SET(STORAGE-AREA)
... LENGTH(WS-LENGTH)
... INITIMG(WS-BLANK)
... ERROR(ERROR-PARA)

CIC-LOAD

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Load specified programs, tables, or maps from a library to main storage;
to delete these, see CIC-RELEASE.

Syntax: CIC-LOAD PROGRAM(name) [SET(linkdataname)]
... [LENGTH(dataarea)]|[FLENGTH(dataarea)]
... [ENTRY(pointref)]
... [HOLD] [ERROR(errorpara)]

Parameters: ENTRY(pointref) BBL cell containing program address after the
LOAD operation.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FLENGTH(value) Applies to the z/OS target only. Specify length
as a full word value.

HOLD Hold loaded module in main storage until a CIC-
RELEASE call executes.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).
Reference

62

rfpubb.book Page 62 Tuesday, February 19, 2002 9:56 AM
Example: Load table TAXTAB into main storage; perform user-defined error
routine ERROR-PARA when an error occurs; store the address at which
the module was loaded in Linkage Section data area TAX-TABLE-AREA;
and store the length of the loaded module in Working-Storage data
area TAX-LEN.

CIC-LOAD PROGRAM(’TAXTAB’)
... SET(TAX-TABLE-AREA) LENGTH(TAX-LEN)
... ERROR(ERROR-PARA)

CIC-READQ-TD

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Read transient data from a predefined data queue.

Syntax: CIC-READQ-TD QUEUE(name)
... INTO(dataarea)|SET(linkdataname)
... [LENGTH(dataarea)] [SYSID(name)]
... [ERROR(errorpara)]

Parameters:

PROGRAM(name) Name of module to load into main storage; can
be a literal or COBOL data name (maximum 8
characters).

SET(linkdataname) 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INTO(dataarea) Name of data area where APS places transient
or temporary data.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).
Reference

CIC-READQ-TS 63

rfpubb.book Page 63 Tuesday, February 19, 2002 9:56 AM
Example: Read a record from a transient data queue ‘TDAQ’ into data area WS-
TD-REC.

CIC-READQ-TD QUEUE(’TDAQ’) INTO(WS-TD-REC)
... LENGTH(WS-TD-LEN)
... ERROR(ERROR-PARA)

CIC-READQ-TS

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Retrieve data from a temporary storage queue in main or auxiliary
storage.

Syntax: CIC-READQ-TS QUEUE(name)
... INTO(dataarea)|SET(linkdataname)
... LENGTH(dataarea) NUMITEMS(dataarea)
... [ITEM(value)|next]
... [SYSID(name)]
... [ERROR(errorpara)]

Parameters:

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SET(linkdataname) 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

SYSID(name) Applies to the z/OS target only. Remote system
name; can be a literal or a COBOL data name
(maximum 4 characters).

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INTO(dataarea) Name of data area where APS places transient
or temporary data.
Reference

64

rfpubb.book Page 64 Tuesday, February 19, 2002 9:56 AM
Example: Read the next (or only) record from temporary storage queue ‘TSAQ’
into data area WS-TD-RECORD.

CIC-READQ-TS QUEUE(’TSAQ’)
... INTO(WS-TD-RECORD) LENGTH(WS-TD-RECLEN)
... ERROR(ERROR-PARA)

CIC-RELEASE

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target in the z/OS environment

Description: Delete program, table, or map, previously loaded with a CIC-LOAD call
(See CIC-LOAD), from main storage.

ITEM(value) Relative record number in the queue; can be a
literal or COBOL data name defined as
S9(04)COMP. Required with REWRITE.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

NEXT Read next sequential logical record.

NUMITEMS(dataarea) Applies to the z/OS target only.
Number of items in the queue.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SET(linkdataname) 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

SYSID(name) Applies to the z/OS target only. Remote system
name; can be a literal or a COBOL data name
(maximum 4 characters).
Reference

CICS 65

rfpubb.book Page 65 Tuesday, February 19, 2002 9:56 AM
Syntax: CIC-RELEASE PROGRAM(name)
... [ERROR(errorpara)]

Parameters:

Example: Delete program PROG5.

CIC-RELEASE PROGRAM(’PROG5’)
... ERROR(ERROR-PARA)

CICS

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS targets

Description: Code and pass through native CICS calls.

Syntax: CICS command

Example: Retrieve the system time of day.

CICS ASKTIME

CIC-SCHEDULE-PSB

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS and IMS DB targets

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs

PROGRAM(name) Main storage module to be deleted; can be a
literal or COBOL data name (maximum 8
characters)
Reference

66

rfpubb.book Page 66 Tuesday, February 19, 2002 9:56 AM
Description: Schedule the PSB in the program, if not currently scheduled; to
terminate it, see CIC-TERM-PSB. APS automatically generates these calls
when you specify a PSB in the Application Painter.

Syntax: CIC-SCHEDULE-PSB

Comment: To define a PSB in your application definition, see the APS User’s Guide
chapter Paint the Application Definition."

CIC-SEND-TEXT

Category Data communication call (see Data Communication Calls)

Compatibility CICS target

Description: Format output data without mapping and transmit to a terminal or line
printer.

Syntax: CIC-SEND-TEXT FROM(dataarea)
... LENGTH(value) [CICSoptions]
... [ERROR(errorpara)]

Parameters:

Comment: Use CIC-SEND-TEXT prior to a TERM (See TERM) from a main program in
order to clear the screen and unlock the keyboard.

CICSoptions Valid CICS option. See your CICS reference
manual for more information.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FROM(dataarea) Data area to be acted on.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP; can also be a partial length (XCTL
only).
Reference

CIC-SERVICE-RELOAD 67

rfpubb.book Page 67 Tuesday, February 19, 2002 9:56 AM
Example: CIC-SEND-TEXT outputs data block TEXT-STRING, to be formatted
without being mapped.

CIC-SEND-TEXT FROM(TEXT-STRING)
... LENGTH(100) ERASE FREEKB
... ERROR(ERROR-PARA)

CIC-SERVICE-RELOAD

Category Data communication call (see Data Communication Calls)

Compatibility CICS target

Description: Establish addressability to a data area in the Linkage Section following
an address change in the BLL cell.

Syntax: CIC-SERVICE-RELOAD linkdataname

Parameters:

Comment: SERVICE-RELOAD is an OS/VS COBOL statement; do not use with COBOL
II, because the compiler treats this call as a CONTINUE statement.

Example: Establish addressability to Linkage area LINK-AREA-1 after an address
change.

MOVE PASSED-ADDRESS TO LINK-AREA-1-PNTR
CIC-SERVICE-RELOAD LINK-AREA-1

CIC-START

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

linkdataname 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.
Reference

68

rfpubb.book Page 68 Tuesday, February 19, 2002 9:56 AM
Description: Start a task on a local or remote system at a specified time.

Syntax: CIC-START TRANSID(name)
... [INTERVAL(hhmmss)|TIME(hhmmss)] [CICSoptions]
... [ERROR(errorpara)]

Parameters:

Examples: Start a specific task (not associated with a terminal) in one hour.

CIC-START TRANSID(’TRNL’) INTERVAL(10000)
... ERROR(ERROR-PARA)

Initiate task TRN2 associated with terminal STA3; begin the task at 5:30
P.M.

CIC-START TRANSID(’TRN2’) TIME(173000)
... TERMID(’STA3’) ERROR(ERROR-PARA)

CIC-TERM-PSB

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

CICSoptions Valid CICS option. See your CICS reference
manual for more information.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INTERVAL(hhmmss) Time interval between issuing and executing
the call. Hhmmss can be replaced by zero, a
decimal constant, or a COBOL data name
defined as PIC S9(07) COMP-3.

TIME(hhmmss) Expiration time for the START function.
Hhmmss can be replaced by a decimal constant
or a COBOL data name defined as PIC S9(07)
COMP-3.

TRANSID(name) Transaction code identifying the program
where control returns; can be a literal
(maximum 4 characters) or COBOL data name
(minimum 5 characters).
Reference

CIC-WRITEQ-TD 69

rfpubb.book Page 69 Tuesday, February 19, 2002 9:56 AM
Description: Terminate the currently scheduled PSB (See CIC-SCHEDULE-PSB). You
normally use this call before transferring to another program.

Syntax: CIC-TERM-PSB

CIC-WRITEQ-TD

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Write transient data to a predefined data queue.

Syntax: CIC-WRITEQ-TD QUEUE(name) FROM(dataarea)
... [LENGTH(value)] [SYSID(name)]
... [ERROR(errorpara)]

Parameters:

Example: Write data to predefined transient data queue ’TRDQ’.

CIC-WRITEQ-TD QUEUE(’TRDQ’) FROM(WS-MESSAGE)
... LENGTH(WS-TD-LEN)
... ERROR(ERROR-PARA)

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FROM(dataarea) Data area to be acted on.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only). Required with SYSID.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).
Reference

70

rfpubb.book Page 70 Tuesday, February 19, 2002 9:56 AM
CIC-WRITEQ-TS

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS target

Description: Write or rewrite temporary data records to a temporary storage queue.

Syntax: CIC-WRITEQ-TS QUEUE(name) FROM(dataarea)
... LENGTH(value) [SYSID(name)]
... [ITEM(dataarea) [REWRITE] [CICSoptions]
... [NOSUSPEND]
... [ERROR(errorpara)]

Parameters: CICSoptions Valid CICS option. See your CICS reference
manual for more information.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FROM(dataarea) Data area to be acted on.

ITEM(value) Relative record number in the queue; can be a
literal or COBOL data name defined as
S9(04)COMP. Required with REWRITE.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

NOSUSPEND Return to the program without waiting for
resources to become available.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

REWRITE Overwrite existing record in queue with data
contained in data area.

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).
Reference

CLEAR 71

rfpubb.book Page 71 Tuesday, February 19, 2002 9:56 AM
Example: Write a record to a temporary storage queue in auxiliary storage, where
the queue name is in QUEUE-NAME.

CIC-WRITE-TS QUEUE(QUEUE-NAME)
... FROM(WS-TS-RECORD)
... LENGTH(WS-TS-LENGTH)
... ITEM(WS-TS-ITEM-NO)
... ERROR(ERROR-PARA)

CLEAR

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, IMS DC, and ISPF Dialog targets

Description: Move spaces or low-values to all fields in a specified screen.

Syntax: [TP-|SC-]CLEAR screenname

Comment: This call does not alter the field attributes.

Example: Move spaces to all fields on screen SCRA.

CLEAR SCRA

CLEAR-ATTRS

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, IMS DC, and ISPF Dialog targets

Description: Reset all screen field attributes to their original painted values.

Syntax: [TP-]CLEAR-ATTRS screenname
Reference

72

rfpubb.book Page 72 Tuesday, February 19, 2002 9:56 AM
Comment: The screen field contents do not change.

Example: Reset all field attributes to their original values for screen SCRA.

CLEAR-ATTRS SCRA

COBOL/2 Support

Description: Code program logic in both the Program Painter and Specification
Editor using COBOL/2 structures.

Under APS COBOL/2 support, you can:

• Code both S-COBOL and COBOL/2 structures in the same program.

• Code structures in columns 7 - 80 (rather than column 12 - 72).

• Import existing COBOL/2 program Procedure Division code directly
into APS, without any changes.

• Generate COBOL/2 output, regardless of whether you use S-COBOL,
COBOL/2, or a combination.

• Generate PERFORM THRU paragraphname-EXIT code for each
paragraph. To do so, change the default NO setting for the GENEXIT
flag to YES in the ISPSLIB member SSMCOMP.

You can turn COBOL/2 support on and off by setting the Generate
COBOL/2 field on the Generation Options screen.

When programming in the Program Painter or Specification Editor, you
can code in COBOL/2 as follows.

• To turn on COBOL/2, enter cobol2 on the Command line.

• To turn off COBOL/2, enter scobol on the Command line.

Comments: • APS saves the current status of COBOL/2 support; therefore it
remains turned on or off the next time you access APS.

• There are slight differences in the Program Painter and Specification
Editor screens when COBOL/2 is turned on.
Reference

COBOL/2 Support 73

rfpubb.book Page 73 Tuesday, February 19, 2002 9:56 AM
• All keywords are supported and required as before. Exception: The
PARA keyword is optional; you can code the paragraph name
beginning in column 8. Keywords are coded in columns 8 - 11 (area
B).

• Paragraph names can have a maximum of 24 characters.

• Code only one verb per line.

• Nested COBOL/2 programs are not supported.

• You must use consistent indentation (we recommend four spaces)
throughout your program, even when importing COBOL/2
structures, or you will receive warning messages and your
generated logic will probably be inaccurate. For example:

000001 IF OK-TO-PROCEED
000002 MOVE A TO B
000003 IF D = E
000004 MOVE F TO G
000005 ELSE
000006 MOVE H TO I

When compiling and generating the above code, APS will not know
which IF statement lines 005 and 006 belong to.

• If a COBOL/2 EVALUATE statement is also valid S-COBOL EVALUATE
syntax, APS processes it as an S-COBOL statement.

• When importing existing COBOL/2 code into APS, remember to
assign the appropriate APS keywords to non-Procedure Division
statements.

• APS stores COBOL/2 program files in a slightly different format to
support access up to column 80. When an existing S-COBOL program
is subsequently saved under COBOL/2, the source text of keyword
lines shifts one byte to the right. This truncates any character coded
in column 72 and displays a Truncation has occurred warning.

This truncation only occurs on a keyword line, and in fairly unusual
circumstances, such as a PARA keyword followed by a long string of
arguments with the last argument ending in column 72. If it
happens, edit the member, fix the line, and save the file with
COBOL/2 support turned on.
Reference

74

rfpubb.book Page 74 Tuesday, February 19, 2002 9:56 AM
CODE

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer

Compatibility: Batch environments

Description: Specify a two-character literal placed at the beginning of each report
line. It is useful when writing multiple reports to one file.

Syntax: CODE literal

Parameters:

Comments: • The two bytes identifying a literal are included in the logical record
size, not in the print line description.

• If your report has a File Description (FD) in the REPORT IS clause,
include a RECORD CONTAINS clause that allows for the two extra
bytes the CODE clause needs; the default value of 133 for RECORD
CONTAINS does not.

If your report does not have a File Description, the APS default
record length of 250 includes the extra two bytes the CODE clause
needs.

• If you specify CODE for one report, specify it for all reports in the
file.

Example: See the APS User’s Guide chapter Create Reports with Report Writer.

literal A two-character, non-numeric name inserted as
the first two bytes of each report record or
print line
Reference

Comments 75

rfpubb.book Page 75 Tuesday, February 19, 2002 9:56 AM
Comments

Description: Enter comments in your program. To write comments in the
Identification Division, see REM.

Syntax: • Format 1, code anywhere in your program:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 /* commentline

• Format 2, code in the Procedure Division only:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 /*commentline

• Format 3, code in the Procedure Division only:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 Program code /*comment

• Format 4, code in Customization Facility macros:

%* comment

• Format 5, code in the Data Structure Painter only:

* comment
/* comment
%* comment

Comments: • Comment lines do not affect the function of a program or data
structure. In the Program Painter, the last keyword entered before
your comment line(s) is still in effect.

Note: You cannot code comments within database calls, data
communication calls, or Data Structure Painter constructs.

• Do not use evaulation brackets in Formats 2, 3, and 4.

• Begin each comment line with /* or %*.

• In the Procedure Division, you can code /* anywhere in the column
12 - 72 area.
Reference

76

rfpubb.book Page 76 Tuesday, February 19, 2002 9:56 AM
• A Customization Facility comment (Format 4) can start in any
column, as long as it is on a line by itself and is indented (we
recommend four spaces) underneath the Customization Facility
statement.

• To code macro statements, use Format 4.

• Do not code comments within database calls.

Examples: In the Program Painter:

-LINE- -KYWD- 12--*--20---*----30----*---40---*----50---*----
60
002000 /* S-COBOL COMMENT LINE
002010 /* COBOL COMMENT LINE
002020 PARA MAIN-PARA /* S-COBOL COMMENT

In the Data Structure Painter:

-LINE- -------- DATA STRUCTURE PAINTER -------
000001 /* WORK FIELD 1 RECORD
000002 WRK1-FIELD-1 X(5)
000003 88 OPEN-VAL V’OPEN’
000004 88 CLOSED-VAL V’CLOSE’

Generated COBOL code:

000001 */* WORK FIELD 1 RECORD
000002 01 WRK1-FIELD-1 PIC X(5).
000003 88 OPEN-VAL VALUE ’OPEN’.
000004 88 CLOSED-VAL VALUE ’CLOSE’.

Component List (MS01)

Category: APS-generated report (see Application Reports)

Description: The Component List Report catalogs all of the components created for
an application within a specific Project andGroup.

The report lists components by painter in six columns - one each for
applications, programs, screens, report mock-ups, data structures, and
Reference

Component List (MS01) 77

rfpubb.book Page 77 Tuesday, February 19, 2002 9:56 AM
scenarios. Within each column, the report lists components in
alphabetical order. The bottom of the report totals the number of
components listed for each painter. You can produce a report listing
application components of one or more types.

Comments: • Produce the Component List Report from the Documentation
Facility.

• This report does not provide information about subschemas or
about the contents of each listed component.

Example:

REPORT CODE: MS01 APS APPLICATION DICTIONARY
PAGE 1
 COMPONENT LIST
05/17/92 09:13
 MKTAPS.MKT2
SELECTION CRITERIA: ALL
**

APPLICATIONS PROGRAMS SCREENS REPORTS DATA STRUCTURES SCENARIOS
------------ -------- ------- ------- --------------- ---------

CICSJSS ADEMO ADEMO $APSCMR APCOMM APDEMO
CICSVSAM AW02PGM ADEMOKB MANUFAC AWO3 APSDEMO
CUSTORDR AW03PGM ADEMO1 MWPART BANK2 APSDEMO2
DEMOKEB XXXPGM ADEMO1J REPORT1 COMAREA2 APSDEMO3
DEMO1803 ANNER1 ADEMO1X VNDROPD DLGAPPL DEMO4
DLXVAPPL DLGINQ ADEMO3D CPFDATAB CBIS
DLX2APPL LGMNU ADEMO3J DB2DEMO DL2APPL
DMVAPPL DLXVINQ A2CASE MARIA DEMO###
LEVEL30 DLX2UPD CMKTEMP QSSGLOBL ISR00007
MVS20SCR DMOMNU CMK1 QSS9 MVS21
PTSUNLD PMINFOT1 DLGU SSS2
PXAPPL PMINFOT2 DMOM TEST
QSSAPPL PMINFO3 KEB
SSKTEST PMINFO4 KEBDEMO1
TDDEMO PMUDS1 KEB1
TESTQSS PMXXXXT2 MEAD1
USRDEMO PMXXXXT3 P22604
 PM1SVKEY REWDEMO
 PTSUNLD TDCS
 PXCUSTM TDDDH
 PXMENU TDDST
 PXORDRM TDFIRN
Reference

78

rfpubb.book Page 78 Tuesday, February 19, 2002 9:56 AM
 PXORDRS TDJH
 PXPARTL TDME
 PXVCUSTM TDOJ
 PXVMENU TDOM
 PXVORDRM TDOT
 PXVORDRS TDOU
 PXVPARTL TDPF
.
.
 TDCM
 TDCS
 TDME
 TDOJ
 TDOM
 TDOT
 TDOU
 TDPF
 TDPL
 TDPM

 APPLICATIONS - 28
 PROGRAMS - 60
 SCREENS - 50
 REPORTS - 6
 DATA STRUCTURES - 13
 SCENARIOS - 18

CONTROL

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer.)

Compatibility: Batch environments

Description: Identify control data items (controls), which are tested for a change
each time a detail line is printed. Create a control hierarchy for the
report control headings and footings (control breaks).

Syntax: • Format 1:

CONTROL [IS] [FINAL] dataname
Reference

CONTROL 79

rfpubb.book Page 79 Tuesday, February 19, 2002 9:56 AM
• Format 2:

CONTROLS [ARE] [FINAL] dataname1 ... datanameN

Parameters:

Comments: • Datanames can be qualified, but cannot be subscripted or indexed,
or have a subordinate data item with a variable size defined in an
OCCURS clause. Each dataname must be a different data item.

• List the datanames from the highest to lowest level. An implicit
FINAL is the highest control. The first dataname is the major control;
the last dataname is the minor (lowest) control.

• You can omit the CONTROL clause when the only control is FINAL.

• The first time a GENERATE builds a report, all control values are
saved. The next GENERATE tests controls for changes every time a
detail line is printed, by comparing the contents with the contents
saved from the last GENERATE of the same report, as follows.

• If the control is numeric, the relation test compares two numeric
operands.

• If the control is an index, the test compares two index data
items.

• If it is neither numeric nor an index, it compares two non-
numeric operands.

• A change in dataname (a control) causes a control break that:

• Prints control footings for lower level datanames, followed by
the control footing for the dataname causing the control break

• Clears counters associated with the datanames

• Prints control headings for the dataname and lower level
datanames

• Prints the detail line causing the break

Example: See the APS User’s Guide chapter Create Reports with Report Writer

dataname Data item that causes a control break when it
changes.

FINAL Inclusive report control group not associated
with a control dataname. It represents the
highest level of control.
Reference

80

rfpubb.book Page 80 Tuesday, February 19, 2002 9:56 AM
Control Files

Description: Use APS control file variables to control certain functions. Each control
file contains documentation on its variables. Look in the APS CNTL PDS
or library for these files.

CICS

File APCICSIN controls:

• DLIUIB name

• Prologue generation

• Inline error checking (for example, CICS IGNORE globally or
NOHANDLE on a call-by-call basis)

• Data name suffixes generated for field length and attribute data
names

• DFHAID and APS-EIBRCODE copybook inclusion

• EJECTs

• CICS comments

• APS/CICS call overrides

• RESP/RESP2 options

APS CNTL File Environment or Function Controlled

APCICSIN CICS

APSDBDC Database and data communication calls

APFEIN Field edits

APDLGIN ISPF Dialog

APIMSIN IMS DB and DC

APDB2IN SQL

APVSAMIN VSAM

APHLPIN User Help Facility database
Reference

Control Files 81

rfpubb.book Page 81 Tuesday, February 19, 2002 9:56 AM
DB and DC Calls

Note: Changing APSDBDC file parameter values affects the entire
installation. To override values only for a specific Project, set the
variables in the CNTL file APSPROJ.

Parameter Description

% SET NOBLANK Suppress blank lines from appearing in the
output. Override with % SET BLANK.

% SET EVAL-BRACKETS "<>" Define the characters used as evaluation
brackets.

Important: Overriding this parameter is not
recommended because it will affect the
Customization Facility macros.

% SET LOOP-LIMIT 500 Limit the APSMACS (APS macros) and
USERMACS (user macros) Customization
Facility loop structures to a maximum of 500
loops. Override with another number, 6 digits
maximum.

Note: Loop limit flags for DB-PROCESS loops
are in the target-specific APS CNTL files.

% &MACRO-COMMENTS = 1 and
% &TP-MACRO-COMMENTS = 1

Allows COBOL comments to appear in
generated source. Override with 0.

% SET TRACE ERROR Customization Facility parameter. An error
trace mechanism that identifies the line of
source that caused the error, the active %
INCLUDE statement(s), the macro(s) currently
invoked and not yet ended, and the number
of loops completed at the time of error (if
applicable). The severity codes of errors traced
are F (Fatal), E (Error), W (Warning), and I
(Information) messages. To eliminate
Information message traces, append a space
and the keyword NOINFO to the trace
statement. To turn off the trace in selected
portions of a program, code % SET NOTRACE.
Reference

82

rfpubb.book Page 82 Tuesday, February 19, 2002 9:56 AM
% &IM-HOLD-DEFAULT = "NOHOLD" Prevent APS-generated IMS DB-OBTAIN calls
from HOLDing a record for update except
when HOLD is specified in the DB-OBTAIN call.
Override with "procopt", which does HOLD a
record automatically, assuming the subschema
or PSB specifies that the program can update
the record.

% &VS-PROTOTYPE-MODE = "NO" "Yes" specifies that a VSAM program is a
prototype, enabling you to code DB calls
without accessing a VSAM file. All subschema
validation at program generation is still
performed. NO means prototype mode is
inactive.

% &IM-SUPPRESS-DB-CALL = "NO" Deactivate the prototype mode for an IMS
program. "Yes" specifies that an IMS program
is a prototype, enabling you to code DB calls
without accessing a data base. All subschema
validation at program generation is still
performed.

% &IM-USE-DFS0AER = 0 Disable the APS-supplied IMS database error
routine macros from calling the IMS-supplied
error display module, DFS0AER. All database
errors are resolved using only the APS-
supplied status flags. To enable use of
DSF0AER and the APS-supplied flags, set to 1.
If your installation does not use DFS0AER,
leave this flag set to 0. See Error Handling.

% &GEN-DB-REC-01-NAMES = 0 IMS DB parameter. If your top-level copylib
records begin with the level number 01
positioned in column 8, use the flag default of
0. If they don’t, override with 1. When writing
DDI statements for copylibs that don’t begin
with 01-level records, see instructions in the
topic Writing DDI Statements for IMS in the
APS User’s Guide.

Note: For VSAM, an equivalent flag exists in
the APS CNTL file APVSAMIN.

Parameter Description
Reference

Control Files 83

rfpubb.book Page 83 Tuesday, February 19, 2002 9:56 AM
% &IM-SUPPRESS-COPYLIB = 0 and
% &VS-SUPPRESS-COPYLIB = 0

Override with 1 to suppress a copylib
described in your DDI statements. &IM is for
IMS; &VS is for VSAM.

% &IM-USE-ASSEMBLER-BLOCKING = 1 Use a supplied Assembler routine to move
data between record I/O areas and IMS
concatenated segment I/O areas in APS-
generated programs. This method is
recommended because it’s more efficient and
doesn’t require redefining the record I/O
areas.

Note: Because this module is linked during
generation of COBOL code, setting this
variable to 1 might interfere with
transportablilty of the generated code.

Overriding with 0 causes APS-generated
programs to block and unblock IMS
concatenated I/O areas using a byte-level loop
in the generated code. Setting to 0 also causes
APS to automatically redefine all record I/O
areas as an array of bytes Note: Setting to 0 is
incompatible with copylib members
containing a COBOL OCCURS DEPENDING ON
clause or multiple record declarations in a
single member.

% ©-SECTION = "WORKING-STORAGE" Specifies that copylib members are placed in
Working-Storage.

% &TP-RETRY = 1 Set the parameter RETRY as the default
parameter for the NTRY call. Override with 0
to set the default to NORETRY. You can also
override on a program-by-program basis by
coding RETRY or NORETRY in the NTRY call.
See NTRY for more information.

% &IM-EXEC-DLI = 0 Generate CALL ’CBLTDLI’ syntax. Override with
1 to generate EXEC DL/I syntax.

% &DBCS = 0 Set to 1, the Double Byte Character Set flag,
for KANJI support.

Parameter Description
Reference

84

rfpubb.book Page 84 Tuesday, February 19, 2002 9:56 AM
Field Edits

File APFEIN controls:

• Setting the maximum number of input and output edited fields per
paragraph. The default is ten input fields and ten output fields. To
change the defaults, set the &FE-INP-PARA-BREAK and &FE-OUT-
PARA-BREAK variables as desired.

• Preventing execution of a user-defined input application edit when
the field does not pass assigned field edits. The default is NO, which
continues execution. To prevent execution, set the variable &FE-
BYPASS-INPUT-APPL-EDIT to YES.

• Preventing execution of subsequent input and output field edits if a
field fails a user-defined input application edit. The default is NO,
which continues execution. To prevent execution, set the variables
&FE-BYPASS-EDITS-IF-APPL-FAIL and &FE-BYPASS-OUTPUT-EDITS to
YES. Overriding this parameter is not recommended because it
affects Customizer rules.

• Using the USA format or European format that reverses the comma
and decimal point. The default is the USA format. To use the
European format, set the &FE-DECIMAL-IS-COMMA variable to YES.

• Supporting DBCS (Double Byte Character Set) characters. The
default for the &FE-DBCS-ENABLE variable is YES.

• Resetting attribute bytes to the painted values if the field passes all
assigned input edits under CICS. The default for the &FE-RESET-CICS-
ATTRS variable is YES.

• Resetting field attribute bytes before or after input edits under
CICS. The default for the &FE-RESET-CICS-ATTRS-AT-TOP variable is
NO, which means after input edits.

• Allowing spaces within numbers. The default for the $FE-EMB-
SPACE-IN-NUMERIC is NO.

• Performing numeric calculations where the numeric de-edit option
was not selected. The default is NO. Setting the &FE-EDIT-WHEN-
NUMERIC to YES readies all numeric fields on the screen for
calculations.

• Interpreting the century for output date formats. The default for
the &FE-FIRST-YEAR-OF-CENTURY is 10. This means that APS
interprets any date with a YY (year) value of 11 through 99 as being
in the 20th century, that is, year 1911 through 1999, and any YY
Reference

Control Files 85

rfpubb.book Page 85 Tuesday, February 19, 2002 9:56 AM
value of 00 through 10 as being in the 21st century, that is, year
2000 through 2010.

IMS DB and DC

Use the IMS control file, APIMSIN, to control these functions:

• Prologue generation

• EJECTs

• Color, Blink, Reverse Video, Underscore switches

• System Service Calls (IM-STAT, IM-LOG, IM-ROLL, IM-ROLB)

• GSAM RSA calls

• DB-PROCESS call loop limit flag, &VS-IMS-LOOP-MAX (default 100);
you can change the limit number or disable the check for the limit.

ISPF Dialog

Use the ISPF Dialog contol file, APDLGIN, to control these functions:

• DYNAM or NODYNAM calls

• VDELETE variables upon TP-TERM

• TP-LINK and TP-XCTL generation of COBOL CALLs or ISPEXEC
SELECTs

• Automatic open/close for VSAM files (enable/disable)

• DB2 COMMIT generation for ISPF Dialog TP-LINK, TP-XCTL, and TP-
TERM calls

• Prologue generation

• EJECTs

• ISPF comments

SQL

Use the DB2 control file, APDB2IN, to control these functions:

• Comment generation (default: comments are generated)

• EJECTs
Reference

86

rfpubb.book Page 86 Tuesday, February 19, 2002 9:56 AM
• Size of SQL calls accepted (default: 200 tokens, for example, items
separated by spaces)

• Generation of the IBM DCLGEN convention, DCLtablename, for host
01-level qualifiers

• Automatic error processing, controlled by the variable &D2-AUTO-
ERROR-HANDLING (default: ON)

• Customization of automatic error processing, including:

• Modifying the APS error processing paragraph &D2-ERROR-
PARA, which resides in the macro $DB2-ERROR-SETUP

• Modifying which status codes should be considered error
conditions, in the macro $DB2-CHECK-RETURNS-AUX, and
changing the status of a referential integrity constraint from an
abnormal condition to an invalid key

• The DB-PROCESS call loop limit flag, &DB2-LOOP-LIMIT (default:
100); you can change the limit number or disable the check for the
limit.

• COMMIT generation for the DB-MODIFY, DB-STORE, DB-ERASE, and
DB-CLOSE calls

• DB2 customization exits, which are program locations where you
can write your own macros to customize APS/SQL calls

• Generated data names. You can:

• Override the use of the IND-cursorname structure when
generating indicator variables

• Use an 01-level name instead of copylib-REC for DB2 record
host-variable qualification

• Modify generated data names used by $DB2-EPILOGUE, which is
invoked after all DB2 calls have been processed

• Use a table alias name instead of the table name

• Comment generation for the APS $DB2- calls, which are used by the
APS/SQL calls
Reference

Control Files 87

rfpubb.book Page 87 Tuesday, February 19, 2002 9:56 AM
VSAM Batch and Online

Use the VSAM control file, APVSAMIN, to control these functions:

• Functions for both CICS/VSAM and batch:

• Abnormal error processing (enable/disable automatic APS
routine)

• Non-referenced record descriptions (include/exclude)

• Record inclusion

• A flag you must use if your copylib records don’t begin with the
01-level number

• CICS/VSAM-specific functions:

• Abnormal error processing (exclude certain CICS Exceptional
Conditions and ISI-Errors from being abnormal conditions)

• DB-PROCESS call loop limit flag, &VS-CICS-LOOP-MAX (default
100); you can change the limit number or disable the check for
the limit.

• ENDBR/UNLOCK

• Customization exits, which are program locations where you can
write your own macros to customize APS/VSAM and native
VSAM calls

• Data name generation

• Comment generation

• Batch-specific functions:

• Abnormal error processing (exclude certain batch conditions
from being abnormal conditions)

• DB-PROCESS call loop limit flag, &VS-MVS-LOOP-MAX (default:
999,999); you can change the limit number or disable the check
for the limit

• Termination method (STOP RUN or call your own abend
program)

• Customization exits, which are program locations where you can
write your own macros to customize APS/VSAM calls
Reference

88

rfpubb.book Page 88 Tuesday, February 19, 2002 9:56 AM
• Data name generation

• Comment generation

User Help

Use the APS User Help Facility control file, APHLPIN, to control these
functions for generating the User Help database:

• Program and screen names (if naming conflicts exists)

• Internal and external storage database targets

• Subschema access used by the help database

• Database name and attributes

• Database field names--COBOL or native

• Screen data storage options

• Data field length

• Global screen message field name

• Field help indicator string

• Date format

• PF key designations

• COBOL help invocation conditions

• APS-generated User Help comment suppression

Control Points

Category: Online Express feature

Description: Write and execute custom processing logic to supplement or override
the default logic that Online Express generates. Execute this logic at any
of the APS-provided locations in your program, known as program
control points.
Reference

Control Points 89

rfpubb.book Page 89 Tuesday, February 19, 2002 9:56 AM
To view the control points in your program, display the Control Points
screen or the Database Call Tailoring screen. Or, you can look in your
generated program source to see where the control points occur. The
complete set of control points is as follows.

Control Point Location in Program

After-Receive-Para After entering a program, regardless of
invocation mode.

Post-Screen-Read After a screen-invoked program receives its
screen.

Transid-Invoked-Para After a transid-invoked program is invoked.

Program-Invoked-Para When APS displays the screen of a program
invoked by the XCTL or MSG-SW function.

Pre-Term Before APS terminates the program.

After-Enter-Check After the end user presses the processing key
(the Enter key is the default), and before the
PRE-FUNCTION-TEST paragraph executes.

Pre-Function-Test Before APS evaluates all functions except the
Terminate, or Exit, function.

Pre-Branch Before each MSG-SW, XCTL, or Call function
executes.

Ed-Error-Pre-Send Before APS send a screen whose field edits
have failed.

General-Pre-Send After APS checks all functions, and before the
TP-SEND call executes, when invocation mode
is screen-invoked.

Before-Send-Para Before APS sends the screen, regardless of
invocation mode.

Pre-Screen-To-Rec Before APS performs the MOVE-SCREEN-TO-
REC paragraph.

Post-Screen-To-Rec After APS performs the MOVE-SCREEN-TO-
REC paragraph, and the Update or Add
function executes.

Pre-Rec-To-Screen Before APS performs the MOVE-REC-TO-
SCREEN paragraph.

Post-Rec-To-Screen After APS performs the MOVE-REC-TO-
SCREEN paragraph, and after the Query
function executes.
Reference

90

rfpubb.book Page 90 Tuesday, February 19, 2002 9:56 AM
Pre-RB1-Row-To-Rec Before the Add or Update function executes
for a repeated record block row, and before
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

Post-RB1-Row-To-Rec Before the Add or Update function executes
for a repeated record block row, and after
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

Pre-Rec-To-RB1-Row After the Query or Forward function executes
for a repeated record block row, and before
database fields move to screen fields. APS
uses the subscript CTR to reference repeated
block rows.

Post-Rec-To-RB1-Row After the Query or Forward function executes
for a repeated record block row, and after
database fields move to screen fields. APS
uses the subscipt CTR to reference repeated
block rows.

Error-Send-And-Quit When a program terminates abnormally, such
as when a database call fails when the
Database Call Tailoring screen’s Abort On
Error parameter is set to Y.

Misc-User-Paragraphs A location where you can write and store any
number of paragraphs to perform at any
control point in the program. Code all your
paragraphs in one file in this location.

Before DB Access Before a non-loop database call executes

Before Loop Before a loop database call executes

Normal Status (Before
Record is Processed)

Before Online Express maps looped records to
the screen

Normal Status After Online Express maps any records to the
screen

Exception Status After the database call returns a status flag
with the Exception status code

Error Status After the database call returns a status flag
with the Error status code

Control Point Location in Program
Reference

Control Points 91

rfpubb.book Page 91 Tuesday, February 19, 2002 9:56 AM
Flowcharts The following flowcharts illustrate the locations of all control points in
APS-generated programs.

After DB Access After a non-loop database call executes

After Loop After a loop database call executes

Control Point Location in Program
Reference

92

rfpubb.book Page 92 Tuesday, February 19, 2002 9:56 AM
Reference

Control Points 93

rfpubb.book Page 93 Tuesday, February 19, 2002 9:56 AM
Reference

94

rfpubb.book Page 94 Tuesday, February 19, 2002 9:56 AM
The flowchart below illustrates the location of the database call control
points in generated programs.
Reference

Control Points 95

rfpubb.book Page 95 Tuesday, February 19, 2002 9:56 AM
Comments: • Because the design and functionality of many programs differ, you
often see a different subset of control points from program to
program.

• APS generates comments in your program to identify the control
points. To activate or deactivate the generation of these comments
in Online Express, access the Express Parms screen and enter yes in
the Control Points Comments field.
Reference

96

rfpubb.book Page 96 Tuesday, February 19, 2002 9:56 AM
• The Normal Status (Before Record is Processed) control point lets
you add custom logic before looped records map to the screen. Use
this control point to map only some of the records that a loop
obtains. In your stub or macro, write conditional logic to determine
which records to map. APS provides a flag, OK-TO-PROCEED, that
you set to True to map and process the record, or False to bypass
mapping and processing. You can ignore the flag if you do not use
this control point; the flag is set to True by default. To add custom
logic after APS maps any record to your screen, use the Normal
Status control point.

Example: Map records that show annual sales of $100,000 or more in the
Northwest region, and calculate and map the grand total of those
records. First define a loop call and qualify it to obtain the records of
$100,000 or more. Then tailor the loop call with two local stubs. The first
stub checks the records obtained by the loop to allow only records of the
Northwest region to be processed further. The second stub calculates the
grand total of those records, and maps the total to the screen.

DB-PROCESS REC SALES-RECORD
... WHERE ANNUAL-SALES-TOTAL > 99999
 PERFORM CHECK-BEFORE-MAPPING-STUB-PARA
 IF OK-TO-PROCEED
 ADD 1 TO CTR
 PERFORM RECORD-STOREKEY-PARA
 MOVE REC-TO-SCREEN-BLK1
 PERFORM CHECK-AFTER-MAPPING-STUB-PARA
 .
 .
 .
CHECK-BEFORE-MAPPING-PARA
 TRUE OK-TO-PROCEED
 IF SALES-REGION NOT = NORTHWEST
 FALSE OK-TO-PROCEED
CHECK-AFTER-MAPPING-PARA
 calculation and mapping routine for grand total

Note:

• The CHECK-BEFORE-MAPPING-PARA paragraph executes at the
Normal Status (Before Record is Processed) control point.

• The CHECK-AFTER-MAPPING-PARA paragraph executes at the
Normal Status control point.

Reference

Database Calls 97

rfpubb.book Page 97 Tuesday, February 19, 2002 9:56 AM
Database Calls

Compatibility: All targets

Description: APS Logical View Database (DB) calls are predefined, easy-to-use
statements with common syntax that allows transparent access to a
variety of databases. The APS Logical View DB calls let you focus on
what needs to be accomplished, rather than the mechanics of the target
environment. To address environment-specific requirements, you can
extend these calls with keywords; no native coding is required. These
calls facilitate both generic processing and specialized requests.

APS supports the following database targets:

• IDMS

• IMS DB

• SQL

• VSAM batch

• VSAM online

Code database calls in the APS Program Painter for batch, report, or
complex online programs, or in the Online Express Specification Editor
for an Express program.

IDMS DB

The APS/IDMS calls include the following:

DB-BIND Bind all records and the run-unit.

DB-CLOSE Close a record.

DB-ERASE Delete a record.

DB-GET Move data into Working-Storage.

DB-OBTAIN Read a record.

DB-OPEN Open a record.

DB-MODIFY Update a record.

DB-STORE Add a record.

DB-PROCESS Obtain and loop records.
Reference

98

rfpubb.book Page 98 Tuesday, February 19, 2002 9:56 AM
IMS DB

The APS/IMS DB calls include the following:

SQL

The APS/SQL DB calls include the following:

IDM-COMMIT Write a commit checkpoint.

IDM-CONNECT Connect a record to a set.

IDM-DISCONNECT Disconnect a record from set.

IDM-IF Test a conditional.

IDM-PROTOCOL Specify the program execution mode.

IDM-RETURN Return the database key from an indexed set.

IDM-ROLLBACK Write an abort checkpoint to an IDMS journal
file.

DB-ERASE Delete a record.

DB-MODIFY Update a record.

DB-OBTAIN Read a record.

DB-PROCESS Read multiple records in a loop.

DB-STORE Add a record.

$IM-FSA Build a Field Search Argument.

$IM-POS Access Data Entry Data Bases.

DB-CLOSE Close a cursor set.

DB-COMMIT Perform the SQL COMMIT function.

DB-DECLARE Declare a cursor set.

DB-ERASE Delete a row.

DB-FETCH Obtain a row from a cursor set.

DB-MODIFY Update a row.

DB-OBTAIN Read a table.

DB-OPEN Open a cursor set.

DB-PROCESS Read a table and loop on it.

DB-ROLLBACK Perform the SQL ROLLBACK function.

DB-STORE Add a record.
Reference

Database Calls 99

rfpubb.book Page 99 Tuesday, February 19, 2002 9:56 AM
VSAM Online

The APS/VSAM online DB calls include the following:

VSAM Batch

The APS/VSAM batch DB calls include the following:

Coding Conventions

APS Logical View DB calls can consist of a call name, keywords, and
arguments. Observe the following conventions when you code a DB
call:

• Code the call using COBOL indentation. Improperly indented calls
may cause errors.

• Argument values can be:

• Variables

• 1- to 7-digit numbers

• Literal strings delimited by single or double quotation marks

• Separate each call component with a space, unless indicated
otherwise in the syntax.

DB-ERASE Delete a record.

DB-FREE Release file resources.

DB-MODIFY Update a record.

DB-OBTAIN Read a file.

DB-PROCESS Read a file and loop on it.

DB-STORE Add a record.

DB-CLOSE Close a file.

DB-ERASE Delete a record.

DB-MODIFY Update a record.

DB-OBTAIN Read a file.

DB-OPEN Open a file.

DB-PROCESS Read a file and loop on it.

DB-STORE Add a record.
Reference

100

rfpubb.book Page 100 Tuesday, February 19, 2002 9:56 AM
• Never code comments within database calls. To code comments, see
Comments.

• Continue a call on as many as 101 subsequent lines by coding an
ellipsis followed by a space (...). Break a call for continuation at any
blank space, but do not break a parameter.

• Do not extend the call past column 72.

Related Topics: See... For more information about...

Error Handling

ID Parameters

IDMS

IDMS DB Sample Programs

Using IDMS database calls in program
logic

CCODE

Error Handling

GSAM Calls

SUPPRESS (IMS DB Option)

System Service Calls

Using IMS DB database calls in program
logic

Error Handling

Fields and Flags, Data
Communication

Variable Length File Support

Using VSAM Batch database calls in
program logic

Error Handling

Fields and Flags, Data
Communication

Using VSAM Online database calls in
program logic

Error Handling

Expressions, SQL

Functions, SQL

GROUP BY

Joins

NULL Indicator Field

Special Registers

Subselect Clause

UNION

Using SQL database calls in program
logic
Reference

Data Communication Calls 101

rfpubb.book Page 101 Tuesday, February 19, 2002 9:56 AM
Data Communication Calls

Compatibility: All targets

Description: APS Logical View Data Communication (DC) calls are predefined, easy-
to-use statements that let you focus on what needs to be accomplished,
rather than the mechanics of the target environment. To address
environment-specific requirements, you can extend these calls with
keywords; no native coding is required. These calls facilitate both
generic processing and specialized requests.

APS supports the following data communication targets:

• CICS

• IMS DC

• ISPF Dialog (DLG)

• ISPF prototyping

Code data communication calls in the APS Program Painter for batch,
report, or complex online programs, or in the Online Express
Specification Editor for an Express program.

Control Files Controlling certain target-specific
functions

Comments Entering comments in your program

Reserved Words Avoiding use of APS reserved words

Limits Recognizing size limitations

See... For more information about...
Reference

102

rfpubb.book Page 102 Tuesday, February 19, 2002 9:56 AM
List of DC Calls

CICS

The APS/CICS DC calls include the following:

ATTR Override default I/O screen field attributes at run
time.

CIC-ADDRESS Access CICS storage areas.

CIC-ASSIGN Assign values defined outside the program to a
data area in Working-Storage.

CIC-CANCEL Cancel a CIC-START or CIC-DELAY.

CIC-DELAY Suspend a task.

CIC-DELETEQ-TD Delete all transient data in a transient data
queue.

CIC-DELETEQ-TS Delete temporary data in a temporary storage
queue and free all storage in the queue.

CIC-FREEMAIN Release storage acquired by a CIC-GETMAIN call.

CIC-GETMAIN Obtain and initialize main storage.

CIC-LOAD Load programs, tables, or maps from a resident
system library to main storage.

CIC-READQ-TD Read transient data from a transient data queue.

CIC-DELETEQ-TS Read a temporary storage queue in main or
auxiliary storage.

CIC-RELEASE Delete from main storage any programs, tables,
or maps loaded by CIC-LOAD.

CIC-SCHEDULE-PSB Schedule an IMS PSB.

CIC-SEND-TEXT Clear the screen and unlock the keyboard before
terminating a program.

CIC-SERVICE-RELOAD Establish addressability to a data area in the
Linkage Section following an address change in
its BLL cell.

CIC-START Start a task on a local or remote system.

CIC-TERM-PSB Terminate the currently scheduled IMS PSB.

CIC-WRITEQ-TD Write transient data to a predefined data queue.

CIC-WRITEQ-TS Write temporary records to a temporary storage
queue.

CLEAR Move spaces to all screen fields.
Reference

Data Communication Calls 103

rfpubb.book Page 103 Tuesday, February 19, 2002 9:56 AM
IMS DC

The APS/IMS DC calls include the following:

CLEAR-ATTRS Reset screen field attributes to their original
values.

LINK Transfer control to a subprogram and optionally
send Commarea data.

RESET-PFKEY Simulate screen invocation.

SCRNLIST Enable the program to receive multiple screens.

SEND Send a screen to the monitor.

TERM Terminate the program.

TP-BACKOUT ABEND the program.

TP-COMMAREA Generate a Working-Storage record for data
that the program can send to and receive from
other programs.

TP-LINKAGE Handle addressability of Linkage Section records.

TP-NULL Move LOW-VALUES to all fields of a specified
screen.

TP-PERFORM Perform a paragraph and optionally pass
arguments.

XCTL Transfer program control to another program at
the same logical level, and send Commarea data.

ATTR Override default I/O screen field attributes at run
time.

CLEAR Move spaces to all screen fields.

CLEAR-ATTRS Reset screen field attributes to their original
values.

$IM-CHNG Issue a change call to another IO PCB.

$IM-CMD

$IM-GCMD

$IM-GN Issue a read of the next IMS message.

$IM-GU Issue a unique read of an IMS message.

$IM-ISRT Insert an IMS message.

$IM-PURG Issue a purge for a PCB.
Reference

104

rfpubb.book Page 104 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog

The APS/ISPF Dialog DC calls include the following:

LINK Transfer control to a subprogram and optionally
send Commarea data.

MSG-SW Transfer control to another program and
optionally send screen data.

RESET-PFKEY Simulate screen invocation.

SCRNLIST Enable the program to receive multiple screens.

SEND Send a screen to the monitor.

TERM Terminate the program.

TP-BACKOUT ABEND the program.

TP-COMMAREA Generate a Working-Storage record for data
that the program can send to and receive from
other programs.

TP-LINKAGE Handle addressability of Linkage Section records.

TP-NULL Move LOW-VALUES to all fields of a specified
screen.

TP-PERFORM Perform a paragraph and optionally pass
arguments.

ATTR Override default I/O screen field attributes at
run time.

CLEAR Move spaces to all screen fields.

CLEAR-ATTRS Reset screen field attributes to their original
values.

DLG-ISPEXEC Invoke services through ISPEXEC calls.

DLG-ISREDIT Invoke services through ISREDIT calls.

DLG-SETMSG Display a message on the next panel.

DLG-VCOPY Copy an ISPF Dialog variable value to a COBOL
variable.

DLG-VDEFINE Link an ISPF Dialog variable and a COBOL
variable.

DLG-VDELETE Delete an ISPF Dialog variable from the function
pool.

DLG-VREPLACE Move a COBOL variable value to the function
pool.
Reference

Data Communication Calls 105

rfpubb.book Page 105 Tuesday, February 19, 2002 9:56 AM
ISPF Prototyping

The APS/ISPF prototyping DC calls include the following:

DLG-VRESET Reset function pool variables.

LINK Transfer control to a subprogram and optionally
send Commarea data.

RESET-PFKEY Simulate screen invocation.

SCRNLIST Enable the program to receive multiple screens.

SEND Send a screen to the monitor.

TERM Terminate the program.

TP-COMMAREA Generate a Working-Storage record for data
that the program can send to and receive from
other programs.

TP-LINKAGE Handle addressability of Linkage Section
records.

TP-NULL Move LOW-VALUES to all fields of a specified
screen.

TP-PERFORM Perform a paragraph and optionally pass
arguments.

XCTL Execute the LINK call.

ATTR Override default I/O screen field attributes at run
time.

LINK Transfer control to a subprogram and optionally
sends Commarea data.

MSG-SW Transfer control to another program and
optionally send screen data.

See RESET-PFKEY Simulate screen invocation.

SCRNLIST Enable the program to receive multiple screens.

SEND Send a screen to the monitor.

TERM Terminate the program.

TP-COMMAREA Generate a Linkage Section record for data that
the program can send to and receive from other
programs.

See TP-PERFORM Perform a paragraph and optionally pass
arguments.
Reference

106

rfpubb.book Page 106 Tuesday, February 19, 2002 9:56 AM
Coding Conventions

APS Logical View DC calls can consist of a call name, keywords, and
arguments. Observe the following conventions when you code a DC
call:

• Code the call using COBOL indentation. Improperly indented calls
may cause errors.

• Argument values can be:

• Variables

• 1- to 7-digit numbers

• Literal strings delimited by single or double quotation marks

• Separate each call component with a space, unless indicated
otherwise in the syntax.

• Code positional arguments in the order shown in the syntax for
each call.

• To omit a positional argument, code an asterisk (*) in its place,
except for the last argument.

• Never code comments within data communication calls. To code
comments, see Comments.

• Continue a call on as many as 101 subsequent lines by coding an
ellipsis followed by a space (...). Break a call for continuation at any
blank space, but do not break a parameter.

• Do not extend the call past column 72.

Related Topics

XCTL Transfer program control to another program at
the same logical level, and send Commarea data.

See... For more information about...

Error Handling

PF Key Values

Program Specification Blocks

TP-COMMAREA

Using CICS data
communication calls in
program logic
Reference

Data Structure Definition (DS01) 107

rfpubb.book Page 107 Tuesday, February 19, 2002 9:56 AM
Data Structure Definition (DS01)

Category: APS-generated report (see Application Reports)

Description: The Data Structure Definition Reports displays data structure
components exactly as painted, together with the following
supplementary information.

• The Data Structure name and creation date

• The Data Structure title and date of last update

The report documents this aspect of your application to support future
maintenance and enhancement efforts.

Comment: Produce the Data Structure Definition Report from the Report
Generator, Painter Menu, or Application Painter.

Error Handling

$IM- Data Communication Calls

Program Control Blocks, IO

System Service Calls

TP-COMMAREA

Using IMS DC data
communication calls in
program logic

ISPF Dialog Compatibility with IMS DC,
CICS

PF Key Values

TP-COMMAREA

Using ISPF Dialog data
communication calls in
program logic

Comments Entering comments in your
program

Control Files Controlling certain target-
specific functions

Reserved Words Avoiding use of APS reserved
words

Limits Recognizing size limitations

See... For more information about...
Reference

108

rfpubb.book Page 108 Tuesday, February 19, 2002 9:56 AM
Example:

REPORT CODE: REPT APS ENTITY REPORT FACILIY PAGE 1
 CLSAPS.CLS2 07/18/92 14:49
REPORT CRITERIA: 2
 ALL MEMBERS OF LIBRARY TYPE : DS

 LIBRARY ENTITY
 TYPE NAME STATUS REMARKS
 ------- -------- ------------- ----------------------------
 DS APFIELDS REPORTED
 DS BATCH1 REPORTED
 DS COM REPORTED
 DS CONDATA REPORTED
 DS COST REPORTED
 DS DSFRD1 REPORTED
 DS FORD2DS REPORTED
 DS HBSPA REPORTED
 DS PARTDATA REPORTED
 DS PARTMSTR REPORTED
 DS P2COMM REPORTED
 DS RECORD1 REPORTED
 DS SBAPPL REPORTED
 DS STR1A REPORTED
 DS TOTCOST REPORTED
 DS TOTCST REPORTED
 DS TRAAPL REPORTED
 DS TRADATA REPORTED
 DS TRFIELDS REPORTED
 DS TR3RECD REPORTED
 DS TR6APPL REPORTED
 DS TR7APPL REPORTED
 DS TR8PART REPORTED

REPORT CODE: DS01 APS APPLICATION PAINTER PAGE 1
 DATA STRUCTURE DEFINITION REPORT 07/18/92 14:49
 CLSAPS.CLS2
SELECTION CRITERIA:
 APFIELDS

**
DATA STRUCTURE: APFIELDS CREATED: 06/06/90
TITLE UPDATED: 06/06/90
**

START DATA STATEMENT LINE NO
COL--
 8 PART-MASTER-REC 00010000
10 PM-PART-NO 9(8) 00020000
10 PM-NEW-PART-NO 9(8) 00030000
10 PM-OLD-PART-NO 9(8) 00040000
10 PM-PART-SHORT-DESC X13 0050000
10 PM-UNITS 9(8) 00060000
10 PM-UNIT-BASE-PRICE S6V2 00070000
10 PM-DIMENSIONS X(8) 00080001
Reference

Data Structures 109

rfpubb.book Page 109 Tuesday, February 19, 2002 9:56 AM
Data Structures

Description: APS lets you code reusable data structures for programs and copy
libraries, using a shorthand format in the Data Structure Painter. Or, you
can code these data structures specifically for your program in the
Program Painter. The shorthand format substitutes indentation for level
numbers and allows shorthand picture formats. The APS Generators
insert level numbers for indentation levels, expand the shorthand
formats to full COBOL formats, and insert the necessary punctuation.
Alternately, you can code data structures in the standard COBOL format.

Constructs:

Edit Mask Characters

Code the following COBOL edit mask characters in your data structures.

A P Z + - * B $ 0

For example:

VALUE (Data Structure) Specify a VALUE clause.

RED Specify a REDEFINES clause.

OCCURS Specify an OCCURS clause.

88 Assign a value(s) to an 88-level variable.

66 . . . RENAMES Designate a 66-level RENAMES clause.

APS Code Generated Code

A(12)000B PIC A(12)000B.

PPP999 PIC PPP999.

ZZZ9.99 PIC ZZZ9.99

+999.99 PIC +999.99.

****.** PIC ****.**.

S999PPP PIC S999PPP.
Reference

110

rfpubb.book Page 110 Tuesday, February 19, 2002 9:56 AM
Picture Formats

Code data structures in the Data Structure Painter format, which is a
shorthand syntax.

Format Generated COBOL

9 PIC 9.

99 PIC 99

999 PIC 999

9999 PIC 9999

9(n) PIC 9(n)

9n PIC 9(n)

9&variable PIC 9(&variable)

A PIC A.

AA PIC AA.

AAA PIC AAA.

A(n) PIC A(n).

An PIC A(n).

A&variable PIC A(&variable).

C PIC S9 COMP.

C(n) PIC S9(n) COMP.

Cn PIC S9(n) COMP.

C-3 PIC S9 COMP-3.

Cn-3 PIC S9(n) COMP-3.

C&variable PIC S9(&variable) COMP.

C&variable+-3 PIC S9(&variable) COMP-3.

F|FULL PIC S9(9) COMP.

H|HALF PIC S9(4) COMP.

I|INDEX INDEX. (For [USAGE IS] INDEX)

N PIC 9.

N(n) PIC 9(n).

Nn PIC 9(n).

N&variable PIC 9(&variable).

P|POINTER POINTER.

 (For COBOL/2 only: [USAGE IS]
POINTER.])

R|REDEF| REDEFINES REDEFINES dataname.
Reference

Data Structures 111

rfpubb.book Page 111 Tuesday, February 19, 2002 9:56 AM
Comments: • Application generation treats most format specifications beginning
with COBOL edit mask characters as a valid COBOL formats, and
passes them directly to the generated program. However, APS
translates an A, followed by a numeral, as follows.

A8 generates PIC A(8).

• Enter only the level 66, 77, or 88 numbers; do not enter other level
numbers, such as 01, 05.

• Enter one data element name per line only. A data element name
can be a valid COBOL name of 1 - 30 characters, or expression
introduced by one of the Customizer default symbols.

• You can continue the data structure on multiple lines wherever a
space occurs, for example:

-------- Data Structure Painter -------
WORK1-FIELD1 X(13)
... V’13 CHARS LONG’
WORK1-FIELD2 X(120)
... VALUE ’A LONG LITERAL MAY
... BE CONTINUED ON ONE OR
... MORE LINES’

S PIC S9.

S(n) PIC S9(n).

Sn PIC S9(n).

S&variable PIC S9(&variable).

SYNC SYNCHRONIZED

V(n) PIC V9(n).

Vn PIC V9(n).

V&variable PIC V9(&variable).

Vvalueclause VALUE valueclause.

X PIC X.

XX PIC XX.

XXX PIC XXX.

XXXX PIC XXXX.

Xn PIC X(n).

X(n) PIC X(n).

X&variable PIC X(&variable).

... Continuation of a format

Format Generated COBOL
Reference

112

rfpubb.book Page 112 Tuesday, February 19, 2002 9:56 AM
• You do not need to code the word PICTURE in a picture clause. A
PICTURE clause format can be a valid COBOL format or a APS Data
Structure Painter shorthand picture format.

• If you do code the PICTURE or PIC, use only valid COBOL syntax
within the PIC clause--do not use the APS shorthand picture format.

• If you code the word PIC, you must follow it with valid COBOL
syntax.

• APS treats the Data Structure Painter formats 99, A9, N9, S9, and V9
as valid COBOL formats and passes them directly to the generated
program (as PIC 99, PIC A9, and so on). If, however, you want the
generated COBOL to be PIC 9(9), PIC V(9), and PIC A(9), use the Data
Structure Painter formats 9(9), V(9), and A(9).

• If a format includes an Customizer variable followed by additional
format syntax, use a plus sign (+) to separate the Customizer
variable from the additional syntax. During processing, APS
eliminates the plus sign and concatenates the suffix onto the syntax.
For example,

9&variable+V5 generates PIC 9(&variable)V9(5).

• Distinguish Vvalueclause from V as an implied decimal point.

• For Vvalueclause, precede the V with a space and immediately
follow it with the valueclause.

• For V as an implied decimal point, use no space before or after
the V.

For example:

N8V4 generates PIC 9(8) V9(4).
N8 V4 generates PIC 9(8) VALUE 4.

• Never code comments within Data Structure Painter constructs. To
code comments, see Comments.

Example: The following illustrates using indentation to create level numbers.

Data Structure Painter code:

-LINE- ------------------ Data Structure Painter -----------
000001 PROG-SPECIFIC-WORKING-DATA
000002 PGWS-FIELD1
000003 PGWS-FIELD2
000004 PGWS-FIELD3
Reference

Date and Time Field Edits 113

rfpubb.book Page 113 Tuesday, February 19, 2002 9:56 AM
000005 PGWS-FIELD4
000006 PGWS-FIELD5
000007 PGWS-FIELD6
000008 PGWS-FIELD7 X13

000009 ... V’ABCDEFGHIJKL’
000010 PGWS-FIELD8
000011 PGWS-FIELD9
000012 PGWS-FIELD10 N13

Generated COBOL code:

01 PROG-SPECIFIC-WORKING-DATA.
 05 PGWS-FIELD1.
 10 PGWS-FIELD2.
 15 PGWS-FIELD3.
 20 PGWS-FIELD4.
 25 PGWS-FIELD5.
 30 PGWS-FIELD6.
 35 PGWS-FIELD7
 PIC X(13)
 VALUE ’ABCDEFGHIJKL’.
 15 PGWS-FIELD8.
 20 PGWS-FIELD9.
 25 PGWS-FIELD10
 PIC 9(13).

Date and Time Field Edits

Category: Screen Painter feature (see Field Edits)

Description: Specify the storage format, the format and data requirements that the
end user must adhere to when entering data into a date or time screen,
and specify the format requirements for displaying the date or time.

Procedure: To assign internal, input, or output edits to a date screen, follow these
steps.

1 Access the Screen Painter, then access the Field Edit Facility. From
the Edit Selection window, select the Special Edits option.
Reference

114

rfpubb.book Page 114 Tuesday, February 19, 2002 9:56 AM
2 From the Special Edits Screen Painter, select one of the following.

3 Assign date edits to fields as listed in the following Predefined
Dates, User-Defined Dates, and Time Field tables or procedures.

Predefined Dates

Option Description

Date--Predefined
Edits

Gregorian, Julian, or system date storage
format and a predefined list of input/output
formats

Date--User-Defined
Edits

Storage, input, and output date format that
you define

Time--User-Defined
Edits

Storage, input, and output formats that you
define

Field Description and Values

Storage Format Specify the internal storage format as follows.

J Julian--generates X(5)

JP Julian packed--generates 9(5) COMP-3

G Gregorian--generates X(6)

GP Gregorian packed--generates 9(6) COMP-3

If you do not specify a Storage Format, you must
select the System Data Displayed option to
capture the system date.

In/Out Format Select the format. All formats are valid input
formats. The field length determines if the special
characters are assigned. For example, if you select
the MM/DD/YY format, and the field length is 8,
then APS assigns MM/DD/YY to the field; if the
field length is 6, APS assigns MMDDYY to the
field.

Date Required Select to indicate that the end user must enter a
value in the field.

Error Processing Select to transfer to the Error Processing window
to specify error messages and attributes when the
field fails input edits.

System Data
Displayed

Select to capture the system date. Select this
option if you do not specify a storage format.
Reference

Date and Time Field Edits 115

rfpubb.book Page 115 Tuesday, February 19, 2002 9:56 AM
User-Defined Dates

Application Editing Select to transfer to the Application Editing
window to specify your own edits in a paragraph,
subprogram, or APS rule for input or output.

Field Description and Values

Field Description and Values

Internal Picture Select to transfer to the Internal Picture window
to specify the COBOL picture characteristics.

Storage Format
Input Format Output
Format

Type the internal storage format mask, input
format mask, and output format mask. Valid
mask characters are Y (year), M (month), D (day),
and special characters if the field is not defined
numeric. Restrictions are

Y Can be 2 or 4 characters, where:

• 2 Ys indicate a numeric year, such as 93.

• 4 Ys indicate a numeric century and year, such
as 1993.

M Can be 2, 3, or 9 characters, where:

• 2 Ms indicate a numeric month, such as 12.

• 3 Ms indicate a short character month, such as
DEC.

• 9 Ms indicate a long character month, such as
DECEMBER.

D Can be 3 characters if you do not define Month,
otherwise it must be 2 characters, where:

• 2 Ds indicate a numeric Gregorian day, such as
30.

• 3 Ds indicate a numeric Julian day, such as
360.

The storage length must equal the Internal
Picture length. Month, day, and year must be in
the same order in both the Input and Output
Formats.
Reference

116

rfpubb.book Page 116 Tuesday, February 19, 2002 9:56 AM
Time Fields

Example:

Storage Format YYYYMMDD

Input Format MMDDYY

Output Format MMMMMMMMM DD, YYYY

Date Required Select to indicate that the end user must enter a
value in the field.

Error Processing Select to transfer to the Error Processing window
to specify error messages and attributes when the
field fails input edits.

System Date Data Select one of the following.

I During input editing, insert the system
date only if the field is blank.

IR During input editing, always insert the
system date, regardless of the field
contents.

O During output editing, insert the system
date only if the field is blank.

OR During output editing, always insert the
system date, regardless of the field
contents.

Application Editing Select to transfer to the Application Editing
window to specify your own edits in a paragraph,
subprogram, or APS rule for input or output.

Field Description and Values

Field Description

Internal Picture Select to transfer to the Internal Picture
window to specify the COBOL picture
characteristics.

Storage Format Specify the internal storage format mask.
Valid characters are HH (hour), MM (minute),
SS (second), *s and special characters if the
field is not defined numeric. The storage
format must equal the Internal Picture length.
Seconds are optional. For example, HH:MM**
Reference

Date and Time Field Edits 117

rfpubb.book Page 117 Tuesday, February 19, 2002 9:56 AM
Input Format and
Output Format

Type the input and output format masks. Valid
mask characters are HH (hour), MM (minute),
SS (second), *s, and special characters if the
field is not defined numeric. Seconds are
optional.

Append your format with asterisks to indicate
the AM and PM indicators that you specify,
using a one-to-one correspondence. For
example, if your indicators are A.M. and P.M.,
you would append **** to your format; if
they are AM and PM, you would append ** to
your format.

Hours, minutes, and seconds must be in the
same order in both the Input and Output
Formats. For example:

Input Format HHMMSS

Output Format HH.MM.SS**

Input Required Select to indicate that the end user must enter
a time value in the field.

Error Processing Select to transfer to the Error Processing
window to specify error messages and
attributes when the field fails input edits.

Application Editing Select to transfer to the Application Editing
window to specify your own edits in a
paragraph, subprogram, or APS rule for input
or output.

System Time Data Select one of the following:

I During input editing, insert the system
time only if the field is blank.

IR During input editing, always insert the
system time, regardless of the field
contents.

O During output editing, insert the
system time only if the field is blank.

OR During output editing, always insert
the system time, regardless of the field
contents.

Field Description
Reference

118

rfpubb.book Page 118 Tuesday, February 19, 2002 9:56 AM
Note: In a report mock-up, use PIC clauses instead of COBOL masks
when formatting dates and times containing / $ or :. See Report Mock-
Ups.

DB/DC Target Combinations

Description: The following table shows all valid DB/DC combinations for generating
executable programs.

AM Indicator Type the AM time indicator, such as a.m. or
am.

PM Indicator Type the PM time indicator, such as p.m. or
pm.

Field Description

DC Target DB Target

CICS DB2

IMS

VSAM

IMS DB2

IDMS

IMS

ISPF DB2

VSAM

DLG (ISPF Dialog) IDMS

DB2

VSAM

MVS (batch) DB2
Reference

DB-BIND 119

rfpubb.book Page 119 Tuesday, February 19, 2002 9:56 AM
DB-BIND

Category: Database call (see Database Calls)

Compatibility: IDMS target

Description: Bind all records copied into a program subschema via a COPY IDMS
statement; bind the run unit.

Syntax: Format 1:

DB-BIND REC [recordname]

Format 2:

DB-BIND RUN-UNIT
... SUBSCHEMA name|NODENAME name|DBNAME name

Parameters:

Comments: • All programs accessing IDMS databases must be bound to the run
unit.

• DB-BIND generates the IDMS command COPY IDMS SUBSCHEMA-
BINDS.

IMS

VSAM

DC Target DB Target

DBNAME name Database name from the IDMS database name
table.

NODENAME name IDMS network node.

REC [recordname] Retrieve record. Recordname is optional because
the record is previously located by a DB-OBTAIN
REF.

RUN-UNIT Specify binding, if IDMS run unit.

SUBSCHEMA name Bind the run unit with the subschema.
Reference

120

rfpubb.book Page 120 Tuesday, February 19, 2002 9:56 AM
• All programs with a subschema generate a DB-BIND, but if protocol
is manual, you must code a DB-BIND REC recordname. Coding DB-
BIND overrides the automatic generation of the call.

• If IDM-PROTOCOL MANUAL is not coded, do not code any options
with DB-BIND. APS generates a COPY IDMS RECORD recordname for
every DB-BIND REC recordname.

• No status flags are generated; paragraph IDMS-STATUS checks for
errors.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYEN IDM-PROTOCOL BATCH-AUTOSTATUS MANUAL
 .
 .
 .

 PROC
 DB-BIND RUN-UNIT DBNAME TESTDB
 DB-BIND REC EMPLOYEE
 DB-OPEN MODE RETRIEVAL
 PERFORM 100-PROCESS-RTN

DB-CLOSE

Category: Database call (see Database Calls)

Compatibility: IDMS DB, SQL, and VSAM batch targets

Description: Close IDMS files and subschema areas; close SQL cursor sets; close VSAM
batch files.

Syntax: IDMS DB

DB-CLOSE ALL

VSAM Batch

Format 1:

DB-CLOSE FILE filename1 [... filenameN]
Reference

DB-COMMIT 121

rfpubb.book Page 121 Tuesday, February 19, 2002 9:56 AM
Format 2:

DB-CLOSE FILE ALL

SQL

DB-CLOSE CUR[SOR] cursorname

Parameters:

Comments:

IDMS DB • DB-CLOSE nullifies all currencies; execute appropriate DB-BIND and
DB-OPEN calls in order to use the database again within the same
program.

• APS generates DB-CLOSE for all online programs unless the program
is a linked program or DB-CLOSE is coded.

SQL

A cursor set can be opened, processed, and closed multiple times in the
same program; you must code DB-CLOSE before you invoke another DB-
OPEN.

VSAM Batch

DB-CLOSE is required.

DB-COMMIT

Category: Database call (see Database Calls)

Compatibility: SQL target

Description: Perform database commit functions.

ALL Specify all files and ready all areas defined in
the subschema.

CUR[SOR] cursorname Specify cursor. Cursorname must be previously
named by DB-DECLARE or DB-PROCESS-ID.

FILE filename File(s) to process.
Reference

122

rfpubb.book Page 122 Tuesday, February 19, 2002 9:56 AM
Syntax: DB-COMMIT [HOLD]

Parameters:

Comments: Any SQL program running under ISPF prototype or ISPF Dialog
generates DB2 COMMITs upon normal termination of the program (for
example, through TP-SEND, TP-XCTL, TP-TERM). In addition, APS
provides two variables you can code that generate COMMITs for DB calls
under either ISPF prototyping or ISPF Dialog.

• &DB2-AUTO-COMMIT = 0. Code this variable before the NTRY call in
your program to generate a COMMIT for the following DB calls.

DB-STORE
DB-ERASE (except with WHERE or WHERE CURRENT)
DB-MODIFY (except with WHERE or WHERE CURRENT)

• &TP-ISPF-DB2-COMMIT-NEEDED = 1. If you modify the NTRY call in
such a way that you need a COMMIT generated at the end of your
modification routine (for example, if you perform an update or
open a cursor), code this variable and set it to 1 before the NTRY call
in your program. You can modify NTRY by updating $TP-ENTRY
functions in the APS CNTL file APDLGIN and coding edit routines.

DB-DECLARE

Category: Database call (see Database Calls)

Compatibility: SQL target

Description: Designate a set of rows as a logical group, that is, a cursor set. The call
declares:

• All rows and columns in a table

• All columns, from specific rows, in a table

• Specific columns in a table

HOLD Do not release resources; do not close open
cursors; preserve prepared SQL statements;
release locks on specific rows acquired during
the transaction.
Reference

DB-DECLARE 123

rfpubb.book Page 123 Tuesday, February 19, 2002 9:56 AM
• Specific columns, from specific rows, in a table

Syntax: Format 1, unqualified, select all columns:

DB-DECLARE cursorname copylibname-REC
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... [UPDATE|ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

Format 2, qualified, select all columns:

DB-DECLARE cursorname copylibname-REC
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... WHERE column operator [[:]altvalue]|column
... [AND|OR column operator [[:]altvalue]|column]
... [UPDATE|ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

Format 3, select specific columns:

DB-DECLARE cursorname copylibname-REC
... [DISTINCT]
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... column1 [(altvalue)] [... columnN [(altvalue)]]
... [WHERE column operator [[:]altvalue]|column
... [AND|OR correlname.]column operator [[:]altvalue]|column]
 .
 .
 .
... [AND|OR correlname.]column operator [[:]altvalue]|column]]
... [UPDATE|ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

Format 4, join columns from two or more tables:

DB-DECLARE cursorname correlname.copylibname-REC
... [DISTINCT]
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... [correlname.copylibname-REC
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
Reference

124

rfpubb.book Page 124 Tuesday, February 19, 2002 9:56 AM
 .
 .
 .
... [WHERE correlname.column operator
[:]altvalue|correlname.column
... [AND|OR correlname.column oper
[:]altvalue|correlname.column]
 .
 .
 .
... [AND|OR correlname.column operator
[:]altvalue|correlname.col]]
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

Format 5, specify a UNION:

DB-DECLARE cursorname copylibname-REC
... [DISTINCT]
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... [WHERE column operator [[:]altvalue]|column
... [AND|OR column operator [[:]altvalue]|column]
 .
 .
 .
... [AND|OR column operator [[:]altvalue|]column]]
... UNION [ALL]
DB-OBTAIN REC copylibname-REC
 .
 .
 .
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

Parameters: [:](altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

• A host-variable is any COBOL data
item referenced in your APS/SQL
code; can a be data item generated
automatically by APS/SQL to match a
DB2 column name.
Reference

DB-DECLARE 125

rfpubb.book Page 125 Tuesday, February 19, 2002 9:56 AM
• An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

AND col op col|[:]altval Value can be a literal or data name. See
also the altvalue parameter above.

copylibname-REC Copybook library name of source data.

correlname. Correlation name; maximum 18
characters, ending with a period.
Required if columnname is in a select list
or if the WHERE clause appears in
multiple joined tables.

cursorname Cursor name (maximum 12 characters)
must be unique, and cannot be the same
as the subschema copylib names.

DISTINCT Eliminate all but one row from each set
of duplicate rows. Duplicate rows have
identical selected columns from the
results table.

FETCH ONLY Specify that the table is read-only and
therefore the cursor cannot be referred
to in positioned UPDATE and DELETE
statements. Do not code in a call that
contains an UPDATE clause.

OPTIMIZE number Specify estimated maximum number of
rows that call will retrieve. If the call
retrieves no more than number rows,
performance could be improved.
Specifying this keyword does not prevent
all rows from being retrieved.

OR col op col|[:]altval Value can be a literal or data name. See
also the altvalue parameter above.
Reference

126

rfpubb.book Page 126 Tuesday, February 19, 2002 9:56 AM
Comments: • Declare a cursor before coding a DB-OPEN or DB-FETCH call.

• Because a declared cursor name is referenced by all subsequent calls
for that cursor, code UPDATE to specify which columns can be
modified; otherwise columns cannot be modified in subsequent
cursor processing.

• When specifying columns for sorting, identify them either by name
or position in the selection list; do not mix references.

• When you code WITH HOLD, a commit operation commits all the
changes in the current unit of work, but releases only locks that are
not required to maintain the cursor. Afterwards, you must code an
initial DB-FETCH before you can execute a positioned update or
delete. After the initial DB-FETCH, the cursor is positioned on the
row following the one it was positioned on before the commit
operation.

• The WITH HOLD clause is ignored in CICS and IMS DC.

ORDER [ASC|DESC] [col1 colN] Sort the results table in ascending
(default) or descending order, based on
the values in the columns specified.
Specify the column either by name or by
relative position in the column selection
list. Specify at least one column. Do not
code with UPDATE.

UPDATE col1 colN Modify columns during cursor processing.
In cursor processing, you cannot modify a
column unless you code UPDATE first. Do
not code UPDATE with UNION, DISTINCT,
GROUP BY, or if call specifies a join or
selects column functions.

WHERE col op [:]altval Column is the column on which to qualify
the selection. Operator can be =, ^=, >, <,
>=, <=, native SQL predicates (such as
LIKE and BETWEEN). See also the altvalue
parameter above.

WITH HOLD Prevent the closing of a cursor as a
consequence of a commit operation. See
also "Comments" below.
Reference

DB-DECLARE 127

rfpubb.book Page 127 Tuesday, February 19, 2002 9:56 AM
Examples: Declare cursor set D2MAST-CURSOR; define to include all rows and
columns in D2MASTER table; allow updating for PM_COLOR and
PM_NEW_PART_NO columns.

DB-DECLARE D2MAST-CURSOR D2TAB-REC
... UPDATE PM_COLOR PM_NEW_PART_NO

Declare cursor set consisting of entire rows selected by evaluating two
columns; if duplicate rows, select only one row where
PM_PART_SHORT_DESC equals Working-Storage variable
WS_PART_SHORT_DESC and PM_UNIT_BASE_PRICE is greater than 10
and less than 50.

DB-DECLARE D2MAST-CURSOR D2TAB-REC
... DISTINCT
... WHERE PM_PART_SHORT_DESC =
... :WS-PART-SHORT-DESC
... AND PM_UNIT_BASE_PRICE BETWEEN 10 AND 50

Declare cursor and define its set to include two columns; select only
rows that meet selection criteria; for column PM_PART_NO, move data
to default destination; for column PM_COLOR, move data to alternate
host-variable WS-COLOR.

DB-DECLARE D2MAST-CURSOR D2TAB-REC
... PM_PART_NO
... PM_COLOR (WS-COLOR)
... WHERE PM_PART_SHORT_DESC =
... :WS-PART-SHORT-DESC
... AND PM_UNIT_BASE_PRICE BETWEEN 10 AND 50

Declare cursor and define its set to include two columns; select only one
row that meets selection criteria. Sort columns by position within
selection list; sort cursor first by PM_COLOR (second column in selection
list), then within PM_COLOR by PM_PART_NO (first column).

DB-DECLARE D2MAST-CURSOR D2TAB-REC
... DISTINCT
... PM_PART_NO PM_COLOR
... WHERE PM_PART_SHORT_DESC =
... :WS-PART-SHORT-DESC
... ORDER 2, 1

Declare a cursor set to include three columns drawn from two separate
select statements, UNIONed together. Select two columns from D2TAB-
REC and one column from D2INVEN-REC in the first UNION. Base
selection criteria on PM_PART_NO matching IN_PART_NO, with
Reference

128

rfpubb.book Page 128 Tuesday, February 19, 2002 9:56 AM
PM_COLOR equal to the Working-Storage field WS-COLOR and IN-
COLOR equal to ’BLUE’.

Select three columns from D2TAB-REC in the second UNION. Base
selection criteria on PM_COLOR not equal to ’BLUE’ and PM_UNITS less
than 50. Sort the result table (consisting of rows returned from both
select statements) by PM_PART_NO within PM_COLOR.

DB-DECLARE JOIN-CUR A.D2TAB-REC
... DISTINCT
... PM_PART_NO PM_COLOR
... B.D2INVEN_REC IN_QTY_ONHAND
... WHERE A.PM_PART_NO = B.IN_PART_NO
... AND A.PM_COLOR = :WS-COLOR
... AND B.IN_COLOR = ’BLUE’
... UNION
DB-OBTAIN REC D2TAB-REC
... PM_PART_NO PM_COLOR PM_UNITS
... WHERE PM_COLOR ^= ’BLUE’
... AND PM_UNITS < 50
... ORDER 1 ASC, 2 ASC

DB-ERASE

Category: Database call (see Database Calls)

Description: Delete a record or records.

Under IDMS, the call deletes:

• Record from all sets in which it participates as a member

• Record from database

• Mandatory and optional member records

Under IMS, the call deletes:

• Record and all dependent segments

• Record obtained by a path call DB-OBTAIN
Reference

DB-ERASE 129

rfpubb.book Page 129 Tuesday, February 19, 2002 9:56 AM
Under SQL, the call deletes:

• All rows in a table

• Specific row in a table

• Cursor set rows

Under VSAM, the call deletes:

• Record(s) specified by key qualification via DB-OBTAIN (key
qualified)

• Record retrieved by DB-OBTAIN or DB-PROCESS (unqualified)

Syntax: IDMS DB

DB-ERASE REC recordname [PERM|SELECT|ALL]

IMS DB

Format 1:

DB-ERASE REC segment [FROM dataarea]
... [VIEW pcbname|PCB pcbname]

Format 2:, records obtained by path calls:

DB-ERASE REC|REF segment1 [FROM dataarea]
... [VIEW pcbname|PCB pcbname]
... REC|REF segment2 [FROM dataarea]
... [VIEW pcbname|PCB pcbname]
 .
 .
 .
... REC segmentN [FROM dataarea]
... [VIEW pcbname|PCB pcbname]

SQL

Format 1:

DB-ERASE REC copylibname-REC
... [WHERE column operator [:]altvalue
... [AND|OR column operator [:]altvalue
 .
 .
 .
... AND|OR column operator [:]altvalue]]
Reference

130

rfpubb.book Page 130 Tuesday, February 19, 2002 9:56 AM
Format 2:

DB-ERASE REC copylibname-REC
... [WHERE CURRENT [OF] cursorname]

VSAM Batch

Format 1, key-qualified:

DB-ERASE REC recordname
 ... WHERE primarykeyname = value
 ... [SUB value] [OF dataarea]

Format 2, unqualified:

DB-ERASE REC recordname

VSAM Online

Format 1, key-qualified:

DB-ERASE REC recordname
... WHERE primarykeyname = value
... [SUB value] [OF dataarea] [KLEN value]
... [SYSID systemname] [DDN ddname]

Format 2, unqualified:

DB-ERASE REC recordname

Parameters: [:](altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

• A host-variable is any COBOL data
item referenced in your APS/SQL
code; can a be data item generated
automatically by APS/SQL to match a
DB2 column name.

• An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

• Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.
Reference

DB-ERASE 131

rfpubb.book Page 131 Tuesday, February 19, 2002 9:56 AM
ALL Same as PERManent, but delete all
optional records.

AND col op [:]altval Value can be a literal or data name. See
also the altvalue parameter above.

DDN ddname File data description name; supply a value
to the name option of CICS DATASET
option. Ddname can be a literal or data
name defined as PIC X(8).

FROM dataarea Alternate I/O area where program
deletes, modifies, or adds a record.
Required for a record obtained from an
I/O area other than the default I/O area,
such as by DB-OBTAIN INTO. See also
"Comments" below.

IMSREC segmentname Specify that the segment name
(maximum 8 characters) is in a Working-
Storage variable for the program to read,
modify, add, or delete.

KLEN value

or

KEYLENGTH value

Specify number or characters in key
length; full or partial length is valid.
Value can be a number or a data name
defined as PIC S9(4) COMP. APS generates
the CICS GENERIC option for a partial key
length.

OF dataarea Qualify the I/O area moving to the value
field, when more than one structure in
the Data Division contains the field.
Optionally code IN instead of OF.

OR col op [:]altval Value can be a literal or data name. See
also the altvalue parameter above.

PCB pcbname Synonymous with VIEW. Specify PCB used
when PSB contains multiple PCBs for the
same database.
Reference

132

rfpubb.book Page 132 Tuesday, February 19, 2002 9:56 AM
Comments: IDMS DB

Record to be deleted must be current of run unit.

PERM[ANENT] Disconnect optional records and delete

• Named record

• Mandatory member records owned
by the named record

• Mandatory member records, if a
mandatory member record is an
owner

SELECT[IVE] Same as PERMANENT, but delete optional
records if they are not members of
another set.

SUB[SCRIPT] (value) Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online,
an integer.

SYSID systemname Process records stored on remote systems.
Name a file residing in a remote data set.
Systemname can be a 4-character literal
region name or a Working-Storage field
containing a 4-character region name.

VIEW pcbname Synonymous with PCB. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. See also
"Comments" below.

WHERE col op [:]altval Not valid for cursor processing. Column is
the column on which to qualify the
selection. Operator can be =, ^=, >, <, >=,
<=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

WHERE primarykey = val Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the
key value.

WHERE CURRENT [OF] cursor Valid for cursor processing only. Act upon
the row retrieved from cursor.
Reference

DB-ERASE 133

rfpubb.book Page 133 Tuesday, February 19, 2002 9:56 AM
IMS DB

• DB-ERASE assumes record retrieval from the default I/O area. If this
is not true, you must code FROM dataarea.

• When a record is obtained from a PCB other than the default PCB,
such as by DB-OBTAIN with VIEW or PCB, you must code VIEW
pcbname.

• Specify every segment down to the first segment being deleted for
records obtained by path calls. That is, every record named in an DB-
OBTAIN preceding an ERASE must be named in the DB-ERASE, also.

Examples: IDMS DB

Record type ORDER is current of run unit. Delete it from the database;
disconnect it from all set occurrences in which the record participates;
delete all mandatory and optional member records.

DB-ERASE REC ORDER ALL

IMS DB

Delete only RECORD-B and RECORD-C. First, issue the following DB-
OBTAIN call.

 DB-OBTAIN REC RECORD-A WHERE KEY-A = VALUE-A
 ... REC RECORD-B WHERE KEY-B = VALUE-B
 ... REC RECORD-C WHERE KEY-C = VALUE-C HOLD

Then, name all segments accessed by the prior path call DB-OBTAIN.
Because the children of a deleted segment are also deleted, there is no
need to code beyond the highest level segment being deleted
(RECORD-B).

DB-ERASE REF RECORD-A
... REC RECORD-B
... REC RECORD-C

SQL

Delete any row in table D2MASTER where PM_PART_NO equals 123 or
567.

DB-ERASE REC D2TAB-REC
... WHERE PM_PART_NO = ’123’
... OR PM_PART_NO = ’567’
Reference

134

rfpubb.book Page 134 Tuesday, February 19, 2002 9:56 AM
VSAM Batch

Delete a record where ORDR-NUMBER equals the value in the Working-
Storage variable CUST-ORDR-NUMBER.

DB-ERASE REC ORDR-RECORD
... WHERE ORDR-NUMBER = CUST-ORDR-NUMBER

Read a CUST-RECORD for deletion.

DB-OBTAIN REC CUST-RECORD
... WHERE CUST-KEY = SCREEN-CUST-KEY
IF OK-ON-REC
 DB-ERASE REC CUST-RECORD

VSAM Online

Delete a group of ORDR-RECORD records; use partial key length. For
successful deletes, store the number of actual records in APS data field
APS-VSAM-NUMREC.

DB-ERASE REC ORDR-RECORD
... WHERE ORDR-NUMBER = SCREEN-PARTIAL-ORDR-NUMBER
... KLEN 6
IF OK-ON-REC
 SCREEN-MSG =
... ’ORDER RECORDS DELETED, NUMBER ORDERS = ’
 SCREEN-NBR-RECS = APS-VSAM-NUMREC

Hold a CUST-RECORD for deletion.

DB-OBTAIN REC CUST-RECORD
... WHERE CUST-KEY = SCREEN-CUST-KEY
... HOLD
IF OK-ON-REC
 DB-ERASE REC CUST-RECORD

DB-FETCH

Category: Database call (see Database Calls)

Compatibility: SQL target
Reference

DB-FREE 135

rfpubb.book Page 135 Tuesday, February 19, 2002 9:56 AM
Description: Sequentially retrieve rows from the cursor set defined by DB-DECLARE.

Syntax: DB-FETCH CUR[SOR] cursorname
... [INTO dataname]

Parameters:

Comments: • When you define a cursor set with DB-DECLARE, SQL places the
selected rows in a results table, or cursor set. DB-FETCH retrieves
these rows.

• Each DB-FETCH returns the next row of the cursor set until the end
of the results table is reached. The row returned by the current
iteration of DB-FETCH is the current row.

• You can code DB-FETCH within an S-COBOL loop to retrieve multiple
rows from a cursor set.

• To FETCH into individual columns, specify those alternate host
variables in DB-DECLARE.

Example: • Retrieve columns and rows in cursor set D2MAST-CURSOR; place
information into WS-D2MAST-RECORD in Working-Storage.

DB-FETCH CURSOR D2MAST-CURSOR
... INTO WS-D2MAST-RECORD

DB-FREE

Category: Database call (see Database Calls)

Compatibility: VSAM online target

CUR[SOR] cursorname Specify cursor. Cursorname must be
previously named by DB-DECLARE or DB-
PROCESS-ID.

INTO dataname Move host variable structure into the
alternate data structure data name. Data
moves after the actual SQL call via a MOVE
statement. Generated code is:

IF OK-ON-REC
 MOVE hostname TO dataname
Reference

136

rfpubb.book Page 136 Tuesday, February 19, 2002 9:56 AM
Description: Release file resources and:

• End a sequential DB-OBTAIN browse.

• Unlock a held record (a record held by a DB-OBTAIN HOLD) when
DB-OBTAIN is not followed by DB-MODIFY or DB-ERASE.

Syntax: DB-FREE REC recordname|ALL
... [VIEW keyname]
... [ENDBR] [UNLOCK] [REQID number]
... [SYSID systemname] [DDN ddname]

Parameters:

Comments: • UNLOCK and ENDBR are default keywords. De-activate as follows.

• Coding only ENDBR makes UNLOCK inactive.

• Coding only UNLOCK makes ENDBR inactive.

• When ALL is coded and UNLOCK and ENDBR are active, a single DB-
FREE call (located in a central paragraph) works for the entire
program. Note Code ALL only when &VS-ENDBR-CONTROL = "APS"
(found in the APS CNTL file APVSAMIN).

ALL Process all subschema records. When coded with
SYSID, all files must reside on the same region.

DDN ddname Specify file ddname; can be a literal or data
name defined as PIC X(8). Supply a value to the
name option of CICS DATASET.

ENDBR End active browse; generate CICS ENDBR
command. See also "Comments" below.

REC recordname COBOL record to process.

REQID number Unique browse identifier for performing a
simultaneous browse on the same key; is a single
integer (0 - 9). Assign &VS-ENDBR-CONTROL =
"USER" in the APS CNTL file APVSAMIN.

SYSID systemname Remote system name (maximum 4 characters);
can be a literal region name or a Working-
Storage field.

UNLOCK Unlock file; generate CICS UNLOCK command.
See also "Comments" below.

VIEW keyname Specify primary or alternate key.
Reference

DB-GET 137

rfpubb.book Page 137 Tuesday, February 19, 2002 9:56 AM
Examples: Release a record held by a direct DB-OBTAIN; deactivate ENDBR.

DB-OBTAIN REC ORDR-RECORD
... WHERE ORDR-NUMBER = SCREEN-ORDR-NUMBER
... HOLD
DB-FREE REC ORDR-RECORD UNLOCK

Terminate a sequential DB-OBTAIN; specify the key used; deactivate
UNLOCK.

DB-OBTAIN REC CUST-RECORD
... VIEW CUST-NUMBER
DB-FREE REC CUST-RECORD
... VIEW CUST-NUMBER ENDBR

DB-GET

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Move data from a previously located record (via a DB-OBTAIN REF) into
Working-Storage.

Syntax: DB-GET REC [recordname]

Parameter:

Example: Record type ORDER is current of record type. After a successful DB-GET
make ORDER data available to the program Working-Storage.

DB-GET REC ORDER

recordname Retrieve record. Recordname is optional because
the record is previously located by a DB-OBTAIN
REF.
Reference

138

rfpubb.book Page 138 Tuesday, February 19, 2002 9:56 AM
DB-MODIFY

Category: Database call (see Database Calls)

Description: Modify a record.

Under IDMS DB, the call rewrites the object record in the database from
Working-Storage.

Under SQL, the call updates row contents in a table or cursor set, as
follows.

• All rows in a table

• Specific rows in a table

• Specific columns in a table

• Specific columns of a specific row

• Cursor set rows

Syntax: IDMS DB

DB-MODIFY REC recordname

IMS DB

DB-MODIFY
... REC|REF recordname1 [FROM dataarea]
... [VIEW pcbname|PCB pcbname]
 .
 .
 .
... REC|REF recordnameN [FROM dataarea]
... [VIEW pcbname|PCB pcbname]

SQL

DB-MODIFY REC copylibname-REC
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... [FROM dataname]
... [WHERE column1 operator [:]altvalue
 .
 .
 .
Reference

DB-MODIFY 139

rfpubb.book Page 139 Tuesday, February 19, 2002 9:56 AM
... AND|OR columnN operator [:]altvalue]

... [END[WHERE]]]

... [WHERE CURRENT [OF] cursorname]

VSAM Batch

DB-MODIFY REC recordname [FROM dataarea]

VSAM Online

DB-MODIFY REC recordname [FROM dataarea]
... [SYSID systemname] [DDN ddname]

Parameters: [:](altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

• A host-variable is any COBOL data
item referenced in APS/SQL code; can
a be data item generated by APS/SQL
to match DB2 column name.

• Iinstruct APS/SQL to use an alternate
variable instead of the variable
automatically generated for a column.
If you name alternate host-variables
for specific columns, do not code
FROM, which names an entire
alternate host structure.

• Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

AND col op [:]altval Value can be a literal or data name. See
also the altvalue parameter above.

DDN ddname Specify file ddname; can be a literal or
data name defined as PIC X(8). Supply a
value to the name option of CICS
DATASET.

END[WHERE] Terminate a WHERE clause. Required if
you code WHERE before FROM.
Reference

140

rfpubb.book Page 140 Tuesday, February 19, 2002 9:56 AM
FROM dataarea Alternate I/O area where program deletes,
modifies, or adds a record. Required for a
record obtained from an I/O area other
than the default I/O area, such as by DB-
OBTAIN INTO.

FROM dataname Move alternate data structure to the host
variable structure name. Data moves prior
to the actual SQL call via MOVE
statement.

Preferred format is to code FROM before
WHERE, otherwise you must separate the
WHERE and FROM with ENDWHERE. See
also "Comments" below.

IMSREC segmentname Specify that the segment name (maximum
8 characters) is in a Working-Storage
variable for the program to read, modify,
add, or delete.

OR col op [:]altval Value can be a literal or data name. See
also the altvalue pararameter above.

PCB pcbname Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database.

REC
copylib-REC

Specify the 01-level name of the COBOL
row layout in the DCLGEN or copybook
information. Cannot be the same as any
cursor names or DB-PROCESS-ID names.

REC recordname COBOL record or IMS segment to process.

REF recordname Specify a COBOL record to reference.
Under IMS, the program uses the
referenced segment for navigating the
database. See also "Comments" below.

SYSID systemname Remote system name (maximum 4
characters); can be a literal region name
or a Working-Storage field.

VIEW pcbname Synonymous with PCB. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. See also
"Comments" below.
Reference

DB-MODIFY 141

rfpubb.book Page 141 Tuesday, February 19, 2002 9:56 AM
Comments: IDMS DB

The object record must be current of run unit. If a CALC key is modified,
the object record can be accessed by the new CALC key value.

IMS DB

• The record must be retrieved and held by a DB-OBTAIN or DB-
PROCESS call before it can be modified.

• DB-MODIFY assumes record retrieval is from the default I/O area. If
it is not, code FROM dataarea.

• When a record is not obtained from the default PCB, such as by DB-
OBTAIN with VIEW or PCB, code VIEW pcbname.

• To modify records obtained by a path call DB-OBTAIN, specify every
segment obtained in the path. To specify that a segment is not
modified, code REF.

VSAM Batch and Online

Before modifying a record, retrieve it with a DB-OBTAIN or DB-PROCESS
call.

Examples: IDMS DB

Rewrite record type ORDER, which is current of run unit, from Working-
Storage.

DB-MODIFY REC ORDER

IMS DB

Modify only RECORD-C.

DB-OBTAIN REC RECORD-A WHERE KEY-A = VALUE-A
... REC RECORD-B WHERE KEY-B = VALUE-B

WHERE col
op [:]altval

Not valid for cursor processing. Column is
the column on which to qualify the
selection. Operator can be =, ^=, >, <, >=,
<=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

WHERE CURRENT [OF] cursor Valid for cursor processing only. Act upon
the row retrieved from cursor.
Reference

142

rfpubb.book Page 142 Tuesday, February 19, 2002 9:56 AM
... REC RECORD-C WHERE KEY-C = VALUE-C HOLD
DB-MODIFY REF RECORD-A
... REF RECORD-B
... REC RECORD-C

SQL

Update specific columns of specific rows using selection criteria and
alternate data from different areas for each column.

DB-MODIFY REC D2TAB-REC
... PM_UNIT_BASE_PRICE (25.99)
... PM_UNITS (:WS-UNITS)
... WHERE PM_PART_SHORT_DESC = ’WIDGET’
... AND PM_COLOR = ’RED’
... AND PM_UNIT_BASE_PRICE < 50

VSAM Batch

Hold CUST-RECORD for modification; specify an alternate storage area
to contain the data that updates the record.

DB-OBTAIN REC CUST-RECORD
... WHERE CUST-NUMBER = SCREEN-CUST-NUMBER
IF OK-ON-REC
 DB-MODIFY REC CUST-RECORD
 ... FROM CUST-RECORD-UPDATE-AREA

VSAM Online

Hold CUST-RECORD for modification; specify an alternate storage area
to contain the data that updates the record.

DB-OBTAIN REC CUST-RECORD
... WHERE CUST-NUMBER = SCREEN-CUST-NUMBER
... HOLD
IF OK-ON-REC
 DB-MODIFY REC CUST-RECORD
 ... FROM CUST-RECORD-UPDATE-AREA
Reference

DB-OBTAIN 143

rfpubb.book Page 143 Tuesday, February 19, 2002 9:56 AM
DB-OBTAIN

Category: Database call (see Database Calls)

Description: Read and retrieve a database record.

Under IDMS DB, DB-OBTAIN:

• Retrieves or finds a record stored within an IDMS database

• Moves a record into Working-Storage

• Establishes currency for a given record type

Under IMS, DB-OBTAIN retrieves segments at any level and performs:

• Qualified and unqualified record retrievals

• Retrieval of records qualified on multiple fields (Boolean
qualification)

• Retrieval of records qualified on secondary indices composed of
more than one field

• Compound calls

• Path calls

• Hold segments for modification or deletion

• Current positioning

• Reset positioning

• First/last qualification

• Naming of an alternate I/O area that a record is read into or stored
from

• Retrieval of segments using concatenated key qualification

Under SQL, DB-OBTAIN:

• Selects an entire row qualified on one column

• Selects an entire row qualified on multiple columns

• Selects specific columns from a row
Reference

144

rfpubb.book Page 144 Tuesday, February 19, 2002 9:56 AM
• Names an alternate data name into which the host-variable
structure is moved

• Joins columns from more than one table

• Specifies a union

Under VSAM, DB-OBTAIN:

• Reads records from a file

• Provides a starting point in a file that meets specified key criteria in
the call

• Reads calls sequentially, in ascending key order (sequential DB-
OBTAIN)

• Reads a record based upon specified key criteria (direct DB-OBTAIN)

• Positions a file for a sequential DB-OBTAIN, based upon key criteria
(positional DB-OBTAIN)

Syntax: IDMS DB

Format 1, based on a CALC key or an indexed or sorted set:

DB-OBTAIN REC|REF recordname
... WHERE keyname = value [NEXT]
... [HOLD] [EXCLUSIVE]

Format 2, where the most recently retrieved occurrence of a record type
is current of run unit:

DB-OBTAIN REC|REF recordname CURRENT
... [HOLD] [EXCLUSIVE]

Format 3, where the most recently retrieved occurrence of any record in
the set or area is current of run unit:

DB-OBTAIN REC|REF IDMSREC
... SET setname|AREA areaname CURRENT
... [HOLD] [EXCLUSIVE]

Format 4, based on database address:

DB-OBTAIN REC|REF IDMSREC|recordname
... WHERE DBKEY = value
... [HOLD] [EXCLUSIVE]
Reference

DB-OBTAIN 145

rfpubb.book Page 145 Tuesday, February 19, 2002 9:56 AM
Format 5, where the set owner is obtained when record is unknown:

DB-OBTAIN REC|REF IDMSREC
... SET setname OWNER
... [HOLD] [EXCLUSIVE]

Format 6, based on a CALC key or an indexed or sorted set, using a valid
operator:

DB-OBTAIN [REF recordname1] REC|REF recordname2
... WHERE sortkey operator value
... [SET setname [RESET]]|[RESET]
... [HOLD] [EXCLUSIVE]

Format 7, based on position within set:

DB-OBTAIN [REF recordname1] REC|REF recordname2
... [SET setname]
... [WHERE SEQUENCE = number|FIRST|LAST|PREV|NEXT]
... [HOLD] [EXCLUSIVE]

Format 8, based on position within the set when the record is unknown:

DB-OBTAIN REC|REF IDMSREC SET setname|AREA areaname
... [WHERE SEQUENCE = number|FIRST|LAST|PREV|NEXT]
... [HOLD] [EXCLUSIVE]

Format 9, based on position within area:

DB-OBTAIN REC|REF recordname [AREA areaname]
... [WHERE SEQUENCE = number|FIRST|LAST|PREV|NEXT]
... [HOLD] [EXCLUSIVE]

IMS DB

Format 1, unqualified:

DB-OBTAIN REC recordname [HOLD] [RESET]

Format 2, qualified:

DB-OBTAIN REC recordname
... WHERE fieldname1 operator value
... [AND|OR fieldname2 operator value [FIRST|LAST]
... [INTO dataarea]
 .
 .
... [AND|OR fieldnameN operator value] [FIRST|LAST]
... [INTO dataarea] [HOLD]]] [RESET]
Reference

146

rfpubb.book Page 146 Tuesday, February 19, 2002 9:56 AM
Format 3, qualified on secondary index values:

DB-OBTAIN REC recordname
... WHERE fieldname operator (value1 [... valueN])
... [INTO dataarea]
... [FIRST|LAST] [HOLD] [RESET]

Format 4, qualified compound retrieval:

DB-OBTAIN REF segmentname1 WHERE fieldname1 operator value
... REC|REF segmentname2 WHERE fieldname2 operator value
 .
 .
 .
... [REC segmentnameN WHERE fieldnameN operator value
... [FIRST|LAST] [HOLD]]
... [RESET]

Format 5, retrieve next segment:

DB-OBTAIN NEXT[REC] INTO dataarea
...VIEW pcbname|PCB pcbname [HOLD] [RESET]

Format 6, retrieve segment specified in program at run time:

MOVE ’segmentname’ TO segmentname
DB-OBTAIN IMSREC segmentname FROM dataarea
... VIEW pcbname|PCB pcbname

Format 7, retrieve dependent of current record:

DB-OBTAIN REF recordname1 CURRENT
... REC recordname2 [WHERE fieldname operator value]

Format 8, retrieve segment from PSB with multiple PCBs:

DB-OBTAIN REC recordname
... [WHERE fieldname operator value]
... VIEW pcbname|PCB pcbname

Format 9, retrieve qualified or subscripted field:

DB-OBTAIN REC recordname
... WHERE keyname operator fieldname
... OF dataarea|SUB (number)

Format 1, retrieve dependent record via concatenated key:

DB-OBTAIN REC recordname CKEYED dataname
Reference

DB-OBTAIN 147

rfpubb.book Page 147 Tuesday, February 19, 2002 9:56 AM
Format 1, qualified, select all columns:

DB-OBTAIN REC copylibname-REC
... WHERE column operator [:]altvalue|column
... [AND|OR column operator [:]altvalue|column]
 .
 .
 .
... [AND|OR column operator [:]altvalue|column]
... [INTO dataname]

Format 2, unqualified, select all columns:

DB-OBTAIN REC copylibname-REC
... [INTO dataname]

Format 3, join all columns from two tables:

DB-OBTAIN REC correlname1.copylibname-REC
... REC correlnameN.copylibname-REC
... [WHERE correlname.column oper
[:]altvalue|correlname.column
... [AND|OR correlname.column op
[:]altvalue|correlname.column]
 .
 .
... [AND|OR correlname.column oper
[:]altvalue|correlname.col]]

Format 4, select specific columns:

DB-OBTAIN REC copylibname-REC [DISTINCT]
... column1 [(altvalue)] [... columnN [(altvalue)]]
... [WHERE [correlname.]column operator [:]altvalue|column]

VSAM Batch

Format 1, sequential:

DB-OBTAIN REC recordname
... [VIEW keyname] [INTO dataarea] [RESET]

Format 2, direct:

DB-OBTAIN REC recordname
... WHERE keyname operator value [SUB value]
... [OF dataarea] [INTO dataarea]
Reference

148

rfpubb.book Page 148 Tuesday, February 19, 2002 9:56 AM
Format 3, positional:

DB-OBTAIN REF recordname
... WHERE keyname operator value [SUB value] [OF dataarea]

VSAM Online

Format 1, sequential:

DB-OBTAIN REC recordname
... [VIEW keyname] [INTO dataarea]
... [HOLD] [PREV] [REQID number] [RESET]
... [SYSID systemname] [DDN ddname]

Format 2, direct:

DB-OBTAIN REC recordname
... WHERE keyname operator value [SUB value]
... [OF dataarea] [INTO dataarea] [KLEN value]
... [HOLD] [REQID number]
... [SYSID systemname] [DDN ddname]

Format 3, positional:

DB-OBTAIN REF recordname
... WHERE keyname operator value [SUB value] [OF dataarea]
... [KLEN value] [RESETBR] [REQID number]
... [SYSID systemname] [DDN ddname]

Parameters: [:](altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

• A host-variable is any COBOL data item
referenced in your APS/SQL code; can a
be data item generated automatically
by APS/SQL to match a DB2 column
name.

• An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

• If you name alternate host-variables for
specific columns, do not code INTO,
which names an entire alternate host
structure.
Reference

DB-OBTAIN 149

rfpubb.book Page 149 Tuesday, February 19, 2002 9:56 AM
• Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

AND col op xol|[:]altval Value can be a literal or data name. See also
the altvalue parameter above.

AREA areaname IDMS area name.

CKEYED dataname Single data area containing concatenated
key information.

correlname. Correlation name (maximum 18 characters);
end with a period. Required if columnname
is in a select list or if the WHERE clause
appears in multiple joined tables.

CURRENT Under IDMS DB, process the last record of
the type accessed. See also "Comments"
below.

Under IMS DB, establish positioning at the
specified dependent of the current,
previously-read parent.

DBKEY=value Assign value to DB key.

DDN ddname Specify file ddname; can be a literal or data
name defined as PIC X(8). Supply a value to
the name option of CICS DATASET.

DISTINCT Eliminate all but one row from each set of
duplicate rows. Duplicate rows have
identical selected columns from the results
table.

EXCLUSIVE IDMS keep exclusive; place an exclusive lock
on the record.

FIRST Under IDMS DB, retrieve the first record in
the set.

Under IMS DB, establish positioning at the
first occurrence of the specified segment;
generate IMS code F.
Reference

150

rfpubb.book Page 150 Tuesday, February 19, 2002 9:56 AM
FROM dataarea Alternate I/O area where program deletes,
modifies, or adds a record. Required for a
record obtained from an I/O area other
than the default I/O area, such as by DB-
OBTAIN INTO.

HOLD Hold a record for modification or deletion.
Code only once, at end of call. Do not code
with PREV or KLEN. See also "Comments"
below.

Under IDMS DB, keep DML; place an explicit
shared lock on the record.

IDMSREC Retrieve IDMS record; do not specify a
record name.

IMSREC segmentname Specify that the segment name (maximum 8
characters) is in a Working-Storage variable
for the program to read, modify, add, or
delete. See also "Comments" below.

INTO dataarea Specify I/O area where the program reads a
record.

INTO dataname Move host variable structure into the
alternate data structure dataname. Can
code before or after WHERE.

Data moves after the actual SQL call via a
MOVE statement. Generated code:

IF OK-ON-REC
 MOVE hostname TO dataname

KLEN value

or

KEYLENGTH value

Specify number or characters in key length;
full or partial length is valid. Value can be a
number or a data name defined as PIC S9(4)
COMP. APS generates the CICS GENERIC
option for a partial key length. Do not use
with HOLD.

LAST Under IDMS DB, retrieve last record in set.

Under IMS DB, establish positioning at the
last occurrence of the specified segment;
generate IMS code L.
Reference

DB-OBTAIN 151

rfpubb.book Page 151 Tuesday, February 19, 2002 9:56 AM
NEXT Under IDMS DB, retrieve next record in the
set (default).

Under IMS DB, sequentially read forward in
database.

OF dataarea Qualify the I/O area moving to the value
field, when more than one structure in the
Data Division contains the field. Optionally
code IN instead of OF.

OR col op col|[:]altval Value can be a literal or data name. See also
the altvalue parameter above.

OWNER Specify owner record.

PCB pcbname Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. Must be last
keyword in call. See also "Comments"
below.

PREV[IOUS] Perform a reverse sequential browse
starting at the last record in file. Do not
code with HOLD or KLEN.

REC copylib-REC Specify the 01-level name of the COBOL
row layout in the DCLGEN or copybook
information. Copybook library name of
source data. Cannot be the same as any
cursor names or DB-PROCESS-ID names. See
also "Comments" below.

REC recordname COBOL record or IMS segment to process.

REF recordname Specify a COBOL record to reference. Under
IMS, the program uses the referenced
segment for navigating the database. See
also "Comments" below.

REQID number Unique browse identifier for performing a
simultaneous browse on the same key; is a
single integer (0 - 9). Assign &VS-ENDBR-
CONTROL = "USER" in the APS CNTL file
APVSAMIN.
Reference

152

rfpubb.book Page 152 Tuesday, February 19, 2002 9:56 AM
RESET Reset database or file positioning to the
beginning. Code only once, at end of call.
Code with PREV or KLEN, to reset file
position to end.

Alternate reset method: prior to retrieving
under VSAM Batch or Online, set RESET-
OBTAIN flag to TRUE; under IMS DB, set
RESET-POSITION flag to TRUE.

RESETBR Reset active browse on key name; generate
CICS RESETBR.

SEQUENCE = number Specify sequence number.

SET setname Specify IDMS set name. See also
"Comments" below.

SUB[SCRIPT] (value) Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online, an
integer.

SYSID systemname Remote system name (maximum 4
characters); can be a literal region name or
a Working-Storage field.

VIEW keyname Specify key primary or alternate key.

VIEW pcbname Synonymous with PCB. Specify the PCB used
when the PSB contains multiple PCBs for
the same database. Must be last keyword in
call. See also "Comments" below.

WHERE column op [:]altval Column is the column on which to qualify
the selection. Operator can be: =, ^=, >, <,
>=, <=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

WHERE fld|key op val|fld Under VSAM Batch or Online, operator can
be: =, EQ, >=, GTEQ; otherwise operator can
be: =, EQ, >, GT, <, LT, >=, GE, <=, LE, <>, NE,
^=.

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the
key value.
Reference

DB-OBTAIN 153

rfpubb.book Page 153 Tuesday, February 19, 2002 9:56 AM
Comments: IDMS DB

• If REF is coded without REC, the action performed is a FIND.

• In Format 1:, if an indexed or sorted set has a complex key (that is,
more than one field makes up the key), a Working-Storage area
named setname-KEY is generated to store the key values. Before
coding DB-OBTAIN, move the desired values to the appropriate
fields in the record obtained.

• In Format 6, to use multiple sets, code SET setname. Code RESET
unless currency on the set has been established.

IMS DB

• In Format 2, fieldname1 can be a primary key, secondary key,
segment sequence field, or segment search field. If it is a secondary
key made up of more than one field, the data name supplied as
value must be a concatenation of all fields composing the index.

• In Format 3, the number of values listed within parentheses must
equal the number of source fields making up the index, and be
listed in the same order. Values can be qualified or subscripted.

• In Format 4:

• Ensure that all segments lie along a single imaginary path that
runs from the root down to the dependent segment, and are in
the same logical database.

• Specify segments in hierarchical order.

• With a compound DB-OBTAIN, code REC for the lowest level
segment.

• In Format 5:

• Do not use with IMS call codes.

• NEXTREC generates IMS retrieval call without segment search
arguments (SSAs).

• Do not use field qualifications with NEXTREC and IMSREC.

• In Format 6:

• Code only one segment per call. Move the correct IMS segment
name into Working-Storage before issuing the call.

• Do not use field qualifications with NEXTREC and IMSREC.
Reference

154

rfpubb.book Page 154 Tuesday, February 19, 2002 9:56 AM
• In Format 7:

• Code CURRENT only with REF.

• Code CURRENT for the first level specified.

• Do not qualify a CURRENT segment in any other way; you can
qualify segments below as usual.

VSAM Online

Always follow a DB-OBTAIN HOLD with a DB-MODIFY or DB-ERASE.

Examples: IDMS DB

Retrieve records with complex key.

MOVE SCR1-LAST-NAME TO CUSTOMER-LAST-NAME
MOVE SCR1-FIRST-NAME TO CUSTOMER-FIRST-NAME
DB-OBTAIN REC CUSTOMER WHERE CUSTOMER-NAME-KEY = *

Make recent occurrence of any record current of run unit.

DB-OBTAIN REC IDMSREC AREA CUST-REGION
... CURRENT

Obtain record based on database address.

DB-OBTAIN REC CUSTOMER WHERE DBKEY = WS-DBKEY

Obtain fifth record in the set.

DB-OBTAIN REF CUSTOMER REF ORDER WHERE SEQUENCE = 5

IMS DB

Do a compound DB-OBTAIN to obtain SEGMENT-C.

DB-OBTAIN REF SEGMENT-A WHERE KEY-A = VALUE-A
... REF SEGMENT-B WHERE KEY-B = VALUE-B
... REC SEGMENT-C WHERE KEY-C = VALUE-C HOLD

Do a path call to retrieve three segments. Use REC at each level to
indicate that each record is retrieved.

DB-OBTAIN REC SEGMENT-A WHERE KEY-A = VALUE-A
... REC SEGMENT-B WHERE KEY-B = VALUE-B
... REC SEGMENT-C HOLD
Reference

DB-OBTAIN 155

rfpubb.book Page 155 Tuesday, February 19, 2002 9:56 AM
Do a path call to retrieve specific records (SEGMENT-A, SEGMENT-C) at
certain levels. Specify that SEGMENT-B is used for qualification only and
is not retrieved.

DB-OBTAIN REC SEGMENT-A WHERE KEY-A = VALUE-A
... REF SEGMENT-B WHERE KEY-B = VALUE-B
... REC SEGMENT-C HOLD

Using position, qualify database access. First, retrieve RECORD-A. Then,
retrieve RECORD-B; restrict the retrieval of RECORD-B to children of the
previously retrieved RECORD-A.

DB-OBTAIN REC RECORD-A WHERE FIELD-1 = VALUE-1
DB-OBTAIN REF RECORD-A CURRENT
... REC RECORD-B WHERE FIELD-2 = VALUE-2

Retrieve the last occurrence of RECORD-B under a specific RECORD-A.

DB-OBTAIN REF RECORD-A WHERE FIELD-1 = VALUE-1
... REC RECORD-B LAST

Reference the next occurrence of RECORD-A; retrieve the first
occurrence of RECORD-B under RECORD-A and read it into DATAAREA-
B. Also, retrieve the first occurrence of RECORD-C under RECORD-B and
read it into DATAAREA-C.

DB-OBTAIN REF RECORD-A
... REC RECORD-B INTO DATAAREA-B
... REC RECORD-C INTO DATAAREA-C

Retrieve RECORD-A based on the value of the data name FIELD-X, which
is found in DATAAREA-Z.

DB-OBTAIN REC RECORD-A
... WHERE KEY-A = FIELD-X OF DATAAREA-Z

Assume FIELD-X is an array as shown. First, retrieve RECORD-A based on
the value of the seventh occurrence of FIELD-X. Then, obtain a
dependent record by specifying its concatenated key.

01 FIELD-X OCCURS 10 TIMES PIC X(10).
 .
 .
 .
DB-OBTAIN REC RECORD-A
... WHERE KEY-A = FIELD-X SUB(7)
 .
 .
 .
Reference

156

rfpubb.book Page 156 Tuesday, February 19, 2002 9:56 AM
DB-OBTAIN REC RECORD-C
... CKEYED WS-FIELD

SQL

Select the rows where PM_PART_NO equals 123; move the data to an
alternate area, WS-D2MAST-RECORD in Working-Storage.

DB-OBTAIN REC D2TAB-REC
... WHERE PM_PART_NO = ’123’
... INTO WS-D2MAST-RECORD

Select only one row (if duplicates exist) based on multiple selection
criteria.

DB-OBTAIN REC D2TAB-REC DISTINCT
... WHERE PM_PART_SHORT_DESC = ’WIDGET’
... AND PM_COLOR = ’RED’

Select only columns PM_PART_NO and PM_COLOR, from rows of table
D2MASTER based on multiple selection criteria; eliminate duplicate
rows. For column PM_PART_NO, move the data to the default
destination, the COBOL host-variable of the same name; for column
PM_COLOR, name an alternate destination, Working-Storage field WS-
COLOR.

DB-OBTAIN REC D2TAB-REC DISTINCT
... PM_PART_NO PM_COLOR (WS-COLOR)
... WHERE PM_PART_SHORT_DESC = ’WIDGET’
... AND PM_COLOR = ’RED’

VSAM Batch

Read records sequentially by the CUST-NUMBER key.

DB-OBTAIN REC CUST-RECORD VIEW CUST-NUMBER

Read records sequentially; store record in an alternate storage area.

DB-OBTAIN REC CUST-RECORD
... INTO CUST-RECORD-SAVE-AREA

Read records by CUST-NUMBER key; identify the subscripted SCREEN-
CUST-NUMBER that is used as the key search value. After successful
execution, establish file position so that a sequential DB-OBTAIN can
read the next record.

DB-OBTAIN REC CUST-RECORD
... WHERE CUST-NUMBER = SCREEN-CUST-NUMBER
Reference

DB-OBTAIN 157

rfpubb.book Page 157 Tuesday, February 19, 2002 9:56 AM
... SUB (ROW-CTR)

Verify the existence of a CUST-NUMBER and (if successful) provide a
starting point in the file for a sequential DB-OBTAIN to execute.

DB-OBTAIN REF CUST-RECORD
... WHERE CUST-NUMBER = SCREEN-CUST-NUMBER
IF OK-ON-REC
 DB-OBTAIN REC CUST-RECORD
 ... VIEW CUST-NUMBER

VSAM Online

Sequentially read records into an alternate storage area and hold a
record for updating. The VSAM Generator ends the sequential read and
rereads the file via the primary key for updating. The sequential read is
then resumed on the next execution of the DB-OBTAIN call.

DB-OBTAIN REC CUST-RECORD
... INTO CUST-RECORD-SAVE-AREA
... HOLD
 .
 .
DB-MODIFY REC CUST-REC

Read records sequentially by the CUST-NUMBER key.

DB-OBTAIN REC CUST-RECORD VIEW CUST-NUMBER

Read records by CUST-NUMBER key. Identify the subscripted SCREEN-
CUST-NUMBER that is used as the key search value. Establish file
position for a sequential DB-OBTAIN.

DB-OBTAIN REC CUST-RECORD
... WHERE CUST-NUMBER = SCREEN-CUST-NUMBER SUB (ROW-CTR)

Read by ORDR-NUMBER; hold the record for updating. Note that if
ORDR-NUMBER was an alternate key, the file would be reread via the
primary key for updating.

DB-OBTAIN REC ORDR-RECORD
... WHERE ORDR-NUMBER = CUST-ORDR-NUMBER HOLD

Verify the existence of CUST-RECORD with the value specified in CUST-
NUMBER and (if successful) provide a starting point in the file for a
sequential DB-OBTAIN.

DB-OBTAIN REF CUST-RECORD
... WHERE CUST-NAME = SCREEN-CUST-NAME
Reference

158

rfpubb.book Page 158 Tuesday, February 19, 2002 9:56 AM
IF OK-ON-REC
 DB-OBTAIN REC CUST-RECORD... VIEW CUST-NAME

DB-OPEN

Category: Database call (see Database Calls)

Compatibility: IDMS DB, SQL, and VSAM batch targets

Description: Open a record, cursor set, or file.

Syntax: IDMS DB

DB-OPEN [ALL] [MODE usagemode]
... [AREA areaname]

SQL

DB-OPEN CUR[SOR] cursorname

OS4 and VSAM Batch

Format 1:

DB-OPEN FILE filename [... filename]
... MODE option

Format 2:

DB-OPEN FILE ALL
... MODE option

Parameters: ALL Specify all files and ready all areas defined in
the subschema.

AREA areaname IDMS area name.

CUR[SOR] cursorname Specify cursor. Cursorname must be previously
named by DB-DECLARE or DB-PROCESS-ID.

FILE filename File(s) to process.
Reference

DB-OPEN 159

rfpubb.book Page 159 Tuesday, February 19, 2002 9:56 AM
Comments:

IDMS DB • DB-OPEN generates an IDMS READY command; if not coded, the call
is automatically generated.

• Usagemode, if specified in the subschema, replaces RETRIEVAL as
the default.

SQL

A cursor set can be opened, processed, and closed multiple times in the
same program. A DB-OPEN issued for an open cursor set causes an error;
first code a DB-CLOSE.

SAM Batch

DB-OPEN is required.

Examples: Open the DORDER file for write-only processing.

DB-OPEN FILE DORDER MODE EXTEND

IDMS DB

Ready all areas in the data view in the default usage mode.

DB-OPEN ALL

Ready CUSTOMER-REGION in PROTECTED UPDATE usage mode.

DB-OPEN MODE PROTECTED UPDATE AREA CUSTOMER-REGION

SQL

Open cursor set D2MAST-CURSOR, previously defined in DB-DECLARE.

DB-OPEN CURSOR D2MAST-CURSOR

VSAM Batch

Open the AORDER and ASUPLIR files for I-O processing.

DB-OPEN FILE AORDER ASUPLIR MODE I-O

MODE option File processing mode: INPUT, OUTPUT, I-O,
EXTEND

MODE usagemode Usage mode--RETRIEVAL (default),PROTECTED
RETRIEVAL, EXCLUSIVE RETRIEVAL, UPDATE,
PROTECTED UPDATE, EXCLUSIVE UPDATE
Reference

160

rfpubb.book Page 160 Tuesday, February 19, 2002 9:56 AM
DB-PROCESS

Category: Database call (see Database Calls)

Description: Combine record retrieval and looping functions into one call.

Under IDMS DB, DB-PROCESS processes all records within a set, an area,
or an indexed set based on a specified value.

Under IMS, DB-PROCESS processes:

• Records that satisfy the key qualification (key qualified)

• Records sequentially (unqualified)

Under SQL, DB-PROCESS simplifies cursor row processing by:

• Declaring a cursor

• Opening a cursor for processing

• Defining a loop flag and a loop counter

• Providing logic for retrieving rows from the results table

• Executing user-written row processing code

• Processing closing the cursor set file at the end of processing

• Processing entire rows throughout a cursor set

• Processing specific columns throughout a cursor set

• Processing specific columns and rows throughout a cursor set

• Processing columns from more than one table, such as a join)

Under VSAM, DB-PROCESS processes records:

• Sequentially, beginning at the position established by the key
qualification (key qualified)

• Sequentially, beginning at the beginning, end, or a previously
defined position in the file (unqualified)
Reference

DB-PROCESS 161

rfpubb.book Page 161 Tuesday, February 19, 2002 9:56 AM
Syntax: IDMS DB

DB-PROCESS [REF recordname] REC recordname
... [DB-PROCESS-ID name] [WHERE keyname operator value]
... [SET setname|AREA areaname] [RESET] [HOLD] [EXCLUSIVE]
 Controlled logic block

IMS DB

Format 1, key-qualified:

DB-PROCESS REC recordname
... [WHERE keyname operator value [SUB value] [OF dataarea]]
... [DB-PROCESS-ID name] [INTO dataarea]
... [HOLD] [RESET]
... [VIEW pcbname|PCB pcbname]
 Controlled logic block

Format 2, unqualified:

DB-PROCESS REC recordname
... [DB-PROCESS-ID name] [INTO dataarea]
... [HOLD] [RESET]
... [VIEW pcbname|PCB pcbname]
 Controlled logic block

SQL

Format 1, unqualified--select all columns:

DB-PROCESS REC copylibname-REC
... [DB-PROCESS-ID name]
... [DB-LOOP-MAX=number]
... [FETCH ONLY] [WITH HOLD]
... [OPTIMIZE number]
... [UPDATE|ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]
... [INTO dataname]
 Controlled logic block

Format 2, qualified--select all columns:

DB-PROCESS REC copylibname-REC
... [DB-PROCESS-ID name]
... [FETCH ONLY] [WITH HOLD] [OPTIMIZE number]
... WHERE column operator [[:]]altvalue]|column
... [AND|OR column operator [[:]altvalue]|column]
 . . .
... [AND|OR column operator [[:]altvalue]|column]
Reference

162

rfpubb.book Page 162 Tuesday, February 19, 2002 9:56 AM
... [DB-LOOP-MAX=number]

... [UPDATE|ORDER

... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

... [INTO dataname]
 Controlled logic block

Format 3, select specific columns:

DB-PROCESS REC copylibname-REC
... [DB-PROCESS-ID name]
... [DISTINCT]
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... column1 [(altvalue)] [... columnN [(altvalue)]]
... WHERE column operator [[:]altvalue]|column
... [AND|OR column operator [[:]altvalue]|column]
 .
 .
 .
... [AND|OR column operator [[:]altvalue]|column]
... [DB-LOOP-MAX=number]
... [UPDATE|ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]
 Controlled logic block

Format 4, join columns from two or more tables:

DB-PROCESS REC correlname.copylibname-REC
... [DB-PROCESS-ID name] [DISTINCT]
... [FETCH ONLY] [WITH HOLD]
... [OPTIMIZE number]
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... REC correlname.copylibname-REC
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
 .
 .
... [WHERE correlname.column oper
[[:]altvalue]|correlname.column
... [AND|OR correlname.column oper
[[:]altvalue]|correlname.col]
 .
 .
... [AND|OR correlname.column oper
[[:]altvalue]|correlname.col]
... [DB-LOOP-MAX=number]
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]
 Controlled logic block
Reference

DB-PROCESS 163

rfpubb.book Page 163 Tuesday, February 19, 2002 9:56 AM
Format 5, specify a UNION:

DB-PROCESS REC copylibname-REC
... [DB-PROCESS-ID name]
... [DISTINCT]
... [FETCH ONLY]
... [WITH HOLD]
... [OPTIMIZE number]
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... [WHERE column operator [[:]altvalue]|column
... [AND|OR column operator [[:]altvalue]|column]
 .
 .
 .
... [AND|OR column operator [[:]altvalue]|column]]
... [DB-LOOP-MAX=number]
... UNION [ALL]
DB-OBTAIN REC copylibname-REC
 .
 .
 .
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]
 Controlled logic block

VSAM Batch

Format 1, qualified:

DB-PROCESS REC recordname WHERE keyname operator value
... [DB-PROCESS-ID name] [SUB value]
... [OF dataarea] [INTO dataarea]
 Controlled logic block

Format 2, unqualified:

DB-PROCESS REC recordname [VIEW keyname]
... [DB-PROCESS-ID name] [INTO dataarea] [RESET]
 Controlled logic block

VSAM Online

Format 1, key-qualified:

DB-PROCESS REC recordname WHERE keyname operator value
... [DB-PROCESS-ID name] [SUB value]
... [OF dataarea] [INTO dataarea]
... [KLEN value] [HOLD] [PREV]
... [REQID number] [SYSID systemname]
Reference

164

rfpubb.book Page 164 Tuesday, February 19, 2002 9:56 AM
... [DDN ddname]
 Controlled logic block

Format 2, unqualified:

DB-PROCESS REC recordname
... [DB-PROCESS-ID name] [INTO dataarea]
... [HOLD] [PREV] [RESET]
... [REQID number] [SYSID systemname]
... [VIEW keyname] [DDN ddname]
 Controlled logic block

Parameters: [:](altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

• A host-variable is any COBOL data
item referenced in your APS/SQL code;
can a be data item generated
automatically by APS/SQL to match a
DB2 column name.

• An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

• If you name alternate host-variables
for specific columns, do not code
INTO, which names an entire
alternate host structure.

• Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

AND col op col|[:]altval Value can be a literal or data name. See
also the altvalue parameter above.

AREA areaname IDMS area name.

BROWSE col1 colN Modify columns during cursor processing.
In cursor processing, you cannot modify a
column unless you specify UPDATE first.
Do not code BROWSE with ORDER,
UNION, DISTINCT, GROUP BY, or if the call
specifies a join or selects column
functions.
Reference

DB-PROCESS 165

rfpubb.book Page 165 Tuesday, February 19, 2002 9:56 AM
CKEYED Retrieve segment with a concatenated
key.

correlname. Correlation name (maximum 18
characters); end with a period. Required if
columnname is in a select list or if the
WHERE clause appears in multiple joined
tables.

CURRENT Under IDMS DB, process the last record of
the type accessed.

Under IMS DB, establish positioning at the
specified dependent of the current,
previously-read parent.

DB-LOOP-MAX=number Maximum number loops allowed.
Overrides loop flags for current structure
only; you can define a different limit for
each DB-PROCESS. See also "Comments"
below.

DB-PROCESS-ID name Generate:

• Cursor named name (for SQL targets)

• End-process flag named name-END-
PROCESS

• Counter named name-PROCESS-CTR

Name (maximum 12 characters) must be
unique, and cannot be the same as the
subschema copylib names. See also
"Comments" below.

DDN ddname Specify file ddname; can be a literal or
data name defined as PIC X(8). Supply a
value to the name option of CICS
DATASET.

DISTINCT Eliminate all but one row from each set of
duplicate rows. Duplicate rows have
identical selected columns from the
results table.

EXCLUSIVE IDMS keep exclusive; place an exclusive
lock on the record.
Reference

166

rfpubb.book Page 166 Tuesday, February 19, 2002 9:56 AM
FETCH ONLY Specify that the table is read-only and
therefore the cursor cannot be referred to
in positioned UPDATE and DELETE
statements. Do not code in a call that
contains an UPDATE clause.

FIRST Under IDMS DB, retrieve the first record in
the set.

Under IMS DB, establish positioning at the
first occurrence of the specified segment;
generate IMS code F.

HOLD Hold a record for modification or
deletion. Code only once, at end of call.
Do not code with PREV or KLEN.

Under IDMS DB, keep DML; place an
explicit shared lock on the record.

IMSREC segmentname Specify that the segment name (maximum
8 characters) is in a Working-Storage
variable for the program to read, modify,
add, or delete.

INTO dataarea Specify I/O area where the program reads
a record.

INTO dataname Move host variable structure into the
alternate data structure dataname. Can
code before or after WHERE.

Data moves after the actual SQL call via a
MOVE statement. Generated code:

IF OK-ON-REC
MOVE hostname TO dataname

KLEN value

or

KEYLENGTH value

Specify number or characters in key
length; full or partial length is valid. Value
can be a number or a data name defined
as PIC S9(4) COMP. APS generates the CICS
GENERIC option for a partial key length.
Do not use with HOLD or PREV.

LAST Under IDMS DB, retrieve last record in set.

Under IMS DB, establish positioning at the
last occurrence of the specified segment;
generate IMS code L.
Reference

DB-PROCESS 167

rfpubb.book Page 167 Tuesday, February 19, 2002 9:56 AM
NEXT Under IDMS DB, retrieve next record in
the set (default).

Under IMS DB, sequentially read forward
in database.

OF dataarea Qualify the I/O area moving to the value
field, when more than one structure in
the Data Division contains the field.
Optionally code IN instead of OF.

OPTIMIZE number Specify estimated maximum number of
rows that call will retrieve. If the call
retrieves no more than number rows,
performance could be improved.
Specifying this keyword does not prevent
all rows from being retrieved.

OR col op col|[:]altval Value can be a literal or data name. See
also the altvalue parameter above.

ORDER [ASC|DESC] [col1 colN] Sort the results table in ascending
(default) or descending order, based on
the values in the columns specified.
Specify the column either by name or by
relative position in the column selection
list. Specify at least one column. Do not
code with UPDATE.

PCB pcbname Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database.

PREV[IOUS] Perform a reverse sequential browse
starting at the last record in file. Do not
code with HOLD or KLEN.

REC copylib-REC Specify the 01-level name of the COBOL
row layout in the DCLGEN or copybook
information. Cannot be the same as any
cursor names or DB-PROCESS-ID names.

REC recordname COBOL record or IMS segment to process.

REF recordname Specify a COBOL record to reference.
Under IMS, the program uses the
referenced segment for navigating the
database.
Reference

168

rfpubb.book Page 168 Tuesday, February 19, 2002 9:56 AM
REQID number Unique browse identifier for performing
a simultaneous browse on the same key; is
a single integer (0 - 9). Assign &VS-ENDBR-
CONTROL = "USER" in the APS CNTL file
APVSAMIN.

RESET Reset database or file positioning to the
beginning. Code only once per call, at
end. Code with PREV or KLEN, to reset file
position to end.

Alternate reset method: prior to
retrieving under VSAM Batch or Online,
set RESET-OBTAIN flag to TRUE; under IMS
DB, set RESET-POSITION flag to TRUE.

SUB[SCRIPT] (value) Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online,
an integer.

SYSID systemname Remote system name (maximum 4
characters); can be a literal region name
or a Working-Storage field.

UPDATE col1 colN Modify columns during cursor processing.
In cursor processing, you cannot modify a
column unless you specify UPDATE first.
Do not code UPDATE with ORDER, UNION,
DISTINCT, GROUP BY, or if the call
specifies a join or selects column
functions.

VIEW keyname Specify primary or alternate key.

VIEW pcbname Synonymous with PCB. Specify the PCB
used when the PSB contains multiple PCBs
for the same database.

WHERE col op [:]altval Column is the column on which to qualify
the selection. Operator can be: =, ^=, >, <,
>=, <=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.
Reference

DB-PROCESS 169

rfpubb.book Page 169 Tuesday, February 19, 2002 9:56 AM
Loop Structure DB-PROCESS provides a built-in loop structure to process records and
rows. The loop structure can include blocks of user-supplied logic and
APS-generated control fields. User logic executes once for each
successful iteration of DB-PROCESS, and can include

• Any APS/DB call, except DB-OPEN, DB-DECLARE, or DB-CLOSE

• Record and row processing code, for example, MOVE DATA TO
SCREEN

APS generates the following fields, enabling you to logically terminate
the loop structure.

WHERE fld|key op value Under VSAM Batch or Online, operator
can be: =, EQ, >=, GTEQ; otherwise
operator can be: =, EQ, >, GT, <, LT, >=, GE,
<=, LE, <>, NE, ^=.

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the
key value.

WITH HOLD Prevent the closing of a cursor as a
consequence of a commit operation. See
also "Comments" below.

APS-END-PROCESS S-COBOL flag initialized FALSE. To end the
process loop, set flag to TRUE.

name-END-PROCESS APS generates this flag, where name is the
PROCESS-ID name. Use this flag when using DB-
PROCESS-ID clauses for nested loops.

name-PROCESS-CTR APS generates this counter, where name is the
PROCESS-ID name. Use this counter when using
DB-PROCESS-ID clauses for nested loops.

APS-PROCESS-CTR APS increments this counter at each process loop
execution. This counter

• Controls looping.

• Serves as a subscript when moving data into
a table or screen fields.

• Counts processed records.
Reference

170

rfpubb.book Page 170 Tuesday, February 19, 2002 9:56 AM
IMS DB, VSAM Batch, and VSAM Online

Sample loop syntax:

/* Begin process loop
DB-PROCESS REC recordname
... WHERE keyname operator value parameters
... [DB-PROCESS-ID name]
 IF APS-PROCESS-CTR|name-PROCESS-CTR > value
 /* End process loop
 TRUE APS-END-PROCESS|name-END-PROCESS
 ELSE
 /* User-written record processing logic
IF ...
/*Logic executed after process loop termination
/* Includes file status checking

IDMS DB

Sample loop syntax:

DB-OBTAIN REC recordname WHERE key = value
/* Begin process loop
DB-PROCESS REF recordname REC recordname
 IF APS-PROCESS-CTR > value
 /* End process loop
 TRUE APS-END-PROCESS
 ELSE
 /* User-written record processing logic
 /* Can include file status checking
/* Logic executed after process loop termination
 /* Can include file status checking

SQL

Sample loop syntax:

/* Begin process loop
DB-PROCESS REC recordname
 /* Custom row processing code
 IF APS-PROCESS-CTR|name-PROCESS-CTR > value
 /* End process loop
 TRUE APS-END-PROCESS|name-END-PROCESS
 ELSE
 /* Custom record processing logic
 /* Can include file status checking
/* Logic executed after process loop termination
/* Can include file status checking
Reference

DB-PROCESS 171

rfpubb.book Page 171 Tuesday, February 19, 2002 9:56 AM
Comments: • Under IDMS DB and SQL, code file status checking inside a DB-
PROCESS loop; under IMS DB, and VSAM Batch or Online, code file
status checking outside the process loop.

• You can nest DB-PROCESS calls if you supply each call with a unique
DB-PROCESS-ID clause, thus providing controlled exits for each.

• DB-PROCESS continues looping until the program reaches a TRUE
APS-END-PROCESS or TRUE name-END-PROCESS, an invalid or end
of file condition, the limit defined by an APS internal counter.

• You can change the value of LOOP-MAX in the APSMACS file; this
affects all generated applications. Or, change the LOOP-MAX limit
at the program level by redefining it at the top of your program
with the SYM1 or SYM2 keyword. For example:

SYM1 % &prefix-LOOP-MAX = 200

• APS defines a loop limit as follows:

• If you do not code DB-PROCESS-ID, the loop limit is 500, set by
the APS counter &APS-DB-PROCESS-GLOBAL-LIMIT. This counter
resides in the APSMACS file APSBASE.

• If you do code DB-PROCESS-ID, adhere to the following loop
limit and counter for each target.

IMS DB

Processing begins at a previously established position in the database or,
if RESET coded, at the beginning of the database.

SQL

• DB-PROCESS generates and performs the DB-DECLARE, DB-OPEN,
DB-FETCH, and DB-CLOSE calls within loop structure.

Target Limit APS Counter

IDMS 100 &IDMS-LOOP-MAX

IMS DB 100 &VS-IMS-LOOP-MAX

SQL 100 &DB2-LOOP-MAX

VSAM Batch 999,999 &VS-MVS-LOOP-MAX

VSAM Online 100 &VS-CICS-LOOP-MAX
Reference

172

rfpubb.book Page 172 Tuesday, February 19, 2002 9:56 AM
• APS automatically declares the cursor at the first DB-PROCESS. All
subsequent calls within the loop reference the cursor. The cursor is
named

• By you, if you code DB-PROCESS-ID.

• By APS, which generates a copylib name and a numeric suffix,
beginning with one and increasing by one with each
subsequent DB-PROCESS for the same DCLGEN or copybook
member.

• When you code WITH HOLD, a commit operation commits all the
changes in the current unit of work, but releases only locks that are
not required to maintain the cursor. Afterwards, you must code an
initial DB-FETCH before you can execute a positioned update or
delete. After the initial DB-FETCH, the cursor is positioned on the
row following the one it was positioned on before the commit
operation.

• The WITH HOLD clause is ignored in CICS and IMS DC.

VSAM Batch

• The ENDFILE condition can be determined outside of the process
loop, even after DB-PROCESS ends the sequential browse.

• You must precede a DB-PROCESS call with a DB-OPEN call, and code
a subsequent DB-CLOSE call. APS does not support automatic file
opening and closing.

VSAM Online

• Because DB-PROCESS terminates the active browse when the
process loop is terminated, it is not necessary to end the browse
with the DB-FREE call.

• DB-PROCESS unlocks a locked record when the process loop
terminates. Unlocking a record via a DB-FREE UNLOCK is
unnecessary.

• The ENDFILE condition can be determined outside of the process
loop, even after DB-PROCESS ends the sequential browse.
Reference

DB-PROCESS 173

rfpubb.book Page 173 Tuesday, February 19, 2002 9:56 AM
Examples: IMS DB, VSAM Batch, and VSAM Online

Process CUST-RECORD; execute logic upon each successful read. Note
that CUST-PROCESS-CTR serves as a subscript for the screen fields.

DB-PROCESS REC CUST-RECORD
... WHERE CUST-KEY >= SCREEN-KEY
... DB-PROCESS-ID CUST
 IF CUST-PROCESS-CTR > SCREEN-MAX
 TRUE CUST-END-PROCESS
 ELSE
 SCREEN-CUST (CUST-PROCESS-CTR) = CUST-NAME
 SCREEN-PHONE (CUST-PROCESS-CTR) = CUST-PHONE
 SCREEN-ADDRESS (CUST-PROCESS-CTR) = CUST-ADDRESS
IF NTF-ON-REC
 SCREEN-MSG = ’CUSTOMER NOT FOUND’
ELSE-IF END-ON-REC
 SCREEN-MSG = ’END OF CUSTOMER RECORDS’

IDMS DB

Process CUST-RECORD; execute logic upon each successful read.

DB-PROCESS REC CUST-RECORD
... WHERE CUST-KEY >= SCREEN-KEY
... SET CUST-ORDR
... DB-PROCESS-ID CUST
 IF CUST-PROCESS-CTR > SCREEN-MAX
 TRUE CUST-END-PROCESS
 ELSE
 SCREEN-CUST (CUST-PROCESS-CTR) = CUST-NAME
 SCREEN-PHONE (CUST-PROCESS-CTR) = CUST-PHONE
 SCREEN-ADDRESS (CUST-PROCESS-CTR) = CUST-ADDRESS
IF NTF-ON-REC
 SCREEN-MSG = ’CUSTOMER NOT FOUND’
ELSE-IF END-ON-REC
 SCREEN-MSG = ’END OF CUSTOMER RECORDS’

SQL

Declare, name, and open a cursor; retrieve all rows and columns; process
only one row from duplicate rows; close the cursor; move data into an
alternate area.

DB-PROCESS REC D2TAB-REC
... DB-PROCESS-ID D2MAST-ID
... DISTINCT
... INTO WS-D2MAST-RECORD
Reference

174

rfpubb.book Page 174 Tuesday, February 19, 2002 9:56 AM
Select specific columns from selected rows; name alternate host-
variables for specific columns; sort columns by position in selection list.

DB-PROCESS REC D2TAB-REC
... DB-PROCESS-ID D2MAST-ID
... PM_PART_NO (WS-PART-NO)
... PM_NEW_PART_NO (WS-NEW-PART-NO) PM_UNITS
... ORDER 1 ASC 3 DESC

Nest one DB-PROCESS within another.

DB-PROCESS REC A.D2TAB-REC
... DB-PROCESS-ID D2MAST-ID
... DISTINCT
... PM_PART_NO PM_UNITS PM_PART_SHORT_DESC
 IF D2MAST-ID-PROCESS-CTR >5
 TRUE D2MAST-ID-END-PROCESS
 ELSE
 /* Custom logic to process SAVEKEY
 IF NOT TRUE D2MAST-ID-END-PROCESS
 DB-PROCESS REC D2INV-REC
 ... DB-PROCESS-ID D2INV-ID
 ... WHERE INPM_PART_NO = :WS-SAVE-PART-NO
 /* Custom record processing logic

DB-ROLLBACK

Category: Database call (see Database Calls)

Compatibility: SQL target

Description: Perform SQL ROLLBACK functions.

Syntax: DB-ROLLBACK
Reference

DB-STORE 175

rfpubb.book Page 175 Tuesday, February 19, 2002 9:56 AM
DB-STORE

Category: Database call (see Database Calls)

Description: Write a record to a file or database.

Under IMS, DB-STORE lets you:

• Specify either a single record level or multiple records along a path,
like DB-OBTAIN.

• Store a dependent segment--one that references one or more
parent level segments to specify the exact record placement. This is
a compound DB-STORE.

Under SQL, DB-STORE lets you add entire rows or selected columns.

Syntax: IDMS DB

DB-STORE REC recordname

IMS DB

DB-STORE [REC|REF recordname1] [FROM dataarea]
... [VIEW pcbname|PCB pcbname]
... [WHERE fieldname operator value]
... [REC|REF recordname2] [FROM dataarea]
... [VIEW pcbname|PCB pcbname]
... [WHERE fieldname operator value]
... [SUB number] [OF dataarea]
 .
 .
 .
... REC recordnameN [FROM dataarea]
... [VIEW pcbname|PCB pcbname]
... [WHERE fieldname operator value]
... [SUB number] [OF dataarea]

OS4

DB-STORE REC recordname
... [FORMAT formatname]
... [FROM dataarea]
Reference

176

rfpubb.book Page 176 Tuesday, February 19, 2002 9:56 AM
SQL

Format 1:

DB-STORE REC copylibname-REC
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... [FROM dataname]

Format 2:

DB-STORE REC copylibname-REC
... [column1 [(altvalue)] [... columnN [(altvalue)]]]
... [DB-OBTAIN REC copylibname-REC
... column1 [... columnN]
... WHERE column1 operator [:]altvalue
... [AND|OR column2 operator [:]altvalue]]
 .
 .
... [AND|OR columnN operator [:]altvalue]]

VSAM Batch

DB-STORE REC recordname [FROM dataarea]

VSAM Online

DB-STORE REC recordname [FROM dataarea]
... [SYSID systemname] [DDN ddname]

Parameters: [:](altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

• A host-variable is any COBOL data item
referenced in your APS/SQL code; can a
be data item generated automatically
by APS/SQL to match a DB2 column
name.

• An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

• If you name alternate host-variables for
specific columns, do not code FROM,
which names an entire alternate host
structure.
Reference

DB-STORE 177

rfpubb.book Page 177 Tuesday, February 19, 2002 9:56 AM
• Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

AND col op [:]altval Value can be a literal or data name. See also
the altvalue parameter above.

CKEYED Position to correct parent segments.

DDN ddname Specify file ddname; can be a literal or data
name defined as PIC X(8). Supply a value to
the name option of CICS DATASET.

FROM dataarea Alternate I/O area where program deletes,
modifies, or adds a record. Required for a
record obtained from an I/O area other than
the default I/O area, such as by DB-OBTAIN
INTO. See also "Comments" below.

FROM dataname Move alternate data structure to the host
variable structure name. Data moves prior
to the actual SQL call via MOVE statement.

Preferred format is to code FROM before
WHERE, otherwise you must separate the
WHERE and FROM with ENDWHERE. See
also "Comments" below.

IMSREC segmentname Specify that the segment name (maximum 8
characters) is in a Working-Storage variable
for the program to read, modify, add, or
delete;.

OF dataarea Qualify the I/O area moving to the value
field, when more than one structure in the
Data Division contains the field. Optionally
code IN instead of OF.

OR col op [:]altval Value can be a literal or data name. See also
the altvalue parameter above.

PCB pcbname Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. See also
"Comments" below.
Reference

178

rfpubb.book Page 178 Tuesday, February 19, 2002 9:56 AM
Comments: IDMS DB

Initialize all CALC keys; make all sets, in which the object record
participates as a mandatory member, current of record type. If the
location mode of the object record is VIA, establish currency for the set
in which the record participates as a member.

REC copylib-REC Specify the 01-level name of the COBOL row
layout in the DCLGEN or copybook
information. Cannot be the same as any
cursor names or DB-PROCESS-ID names.

REC recordname COBOL record or IMS segment to process.

REF recordname Specify a COBOL record to reference. Under
IMS, the program uses the referenced
segment for navigating the database.

SUB[SCRIPT](value) Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online, an
integer.

SYSID systemname Remote system name (maximum 4
characters); can be a literal region name or
a Working-Storage field.

VIEW pcbname Synonymous with PCB. Specify the PCB used
when the PSB contains multiple PCBs for the
same database. See also "Comments"
below.

WHERE col op [:]altval Column is the column on which to qualify
the selection. Operator can be: =, ^=, >, <,
>=, <=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

WHERE fld|key oper value Code only with REF parameter.

Under VSAM Batch or Online, operator can
be: =, EQ, >=, GTEQ; otherwise operator can
be: =, EQ, >, GT, <, LT, >=, GE, <=, LE, <>, NE,
^=.

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the key
value.
Reference

DB-STORE 179

rfpubb.book Page 179 Tuesday, February 19, 2002 9:56 AM
IMS DB

• When a record is not obtained from the default I/O area, such as by
DB-OBTAIN INTO, code FROM dataarea.

• When a record is not obtained from the default PCB, such as by DB-
OBTAIN VIEW|PCB, code VIEW|PCB pcbname.

• When you store a new root, DB-STORE places the record according
to its key field value. If a STORE for a dependent record provides
qualification at each parent level, this qualification specifies the
position of the new record. Otherwise, prior database positioning
determines record placement. Thus, a DB-STORE for a dependent
record should either

• Specify qualification at each parent level, or

• Ensure that the preceding database call executed for the
database PCB accesses the desired parent.

Examples: IDMS DB

Write record type ORDER from Working-Storage.

DB-STORE REC ORDER

IMS DB

Add an occurrence of RECORD-A to the database.

DB-STORE REC RECORD-A

Add one occurrence of RECORD-A and one of its dependents,
RECORD-B.

DB-STORE REC RECORD-A REC RECORD-B

Add one occurrence of RECORD-B, a dependent of a specific RECORD-A.

DB-STORE REF RECORD-A WHERE FIELD-1 = VALUE-1 REC RECORD-B

Alternately, add RECORD-B by coding DB-STORE after DB-OBTAIN.

DB-OBTAIN REF RECORD-A WHERE KEY-A = VALUE-A
DB-STORE RECORD-B
Reference

180

rfpubb.book Page 180 Tuesday, February 19, 2002 9:56 AM
SQL

Insert specific columns into D2MASTER; for PM_PART_NO, store
information from the default COBOL host variable; for other columns,
name alternate sources of information.

DB-STORE REC D2TAB-REC
... PM_PART_NO PM_NEW_PART_NO (’23432’)
... PM_COLOR (:WS-NEW-COLOR)

Insert columns IN_PART_NO and IN_UNIT_BASE_PRICE from D2MASTER
into table D2INVEN; select only rows from D2MASTER where
PM_PART_NO does not equal PM_NEW_PART_NO.

 DB-STORE REC D2INVEN-REC IN_PART_NO IN_UNIT_BASE_PRICE
 ... DB_OBTAIN REC D2MASTER-REC PM_PART_NO PM_UNIT_BASE_PRICE
 ... WHERE PM_PART_NO not= PM_NEW_PART_NO

VSAM Batch and VSAM Online

Write ORDR-RECORD to the file; check file status.

DB-STORE REC ORDR-RECORD
IF OK-ON-REC
 SCREEN-MSG = ’ORDER ADDED TO FILE’
ELSE-IF IVD-ON-REC
 SCREEN-MSG = ’ORDER ALREADY EXISTS’

DB-SUBSCHEMA

Category: Database call (see Database Calls)

Compatibility: IDMS DB, IMS DB, SQL, VSAM batch, and VSAM online targets

Description: Include the imported program subschema in your program. APS
automatically does this for you when you specify your subschema in the
Application Painter after importing the subschema.

Syntax: DB-SUBSCHEMA subschemaname

Comment: Specify a subschema for an APS program in either of the following
ways.
Reference

DDIFILE Report (DB01) 181

rfpubb.book Page 181 Tuesday, February 19, 2002 9:56 AM
• Recommended way Code the subschema name in the Application
Painter.

• Code a DB-SUBSCHEMA call prior to the NTRY parameter.

DDIFILE Report (DB01)

Category: APS-generated report (see Database Calls)

Description: The DDIFILE Report describes the contents of the DDIFILE that contains
your imported database definitions. Use this report to understand and
evaluate the results of an import.

The report provides a section for each of the following items.

• DBDs

• PSBs

• Files

• Subschemas

Comment: Produce the DDIFILE Report from the Documentation Facility.

Example:

REPORT CODE: DB01 APS DATA DESCRIPTION INTERFACE PAGE 1
 DBD REPORT 92/01/21 09:53

NAME CREATED UPDATED REC NO MESSAGE

BE3ORDER 88/08/19 88/08/19 20 INCOMPLETE SET OF DDI NAMES FOUND
BE3ORDRX 88/08/19 88/08/19 3 NO DDI NAMES SPECIFIED
CORDPSB 89/10/12 00/00/00 3
CPTORDLD 89/11/02 00/00/00 3

REPORT CODE: DB01 APS DATA DESCRIPTION INTERFACE PAGE 4
 FILE REPORT 92/01/21 09:53

NAME CREATED UPDATED REC NO MESSAGE

CUSTMAST-REC 90/08/13 90/08/15 5
CUSTORDR-REC 90/08/13 90/08/15 5

Reference

182

rfpubb.book Page 182 Tuesday, February 19, 2002 9:56 AM
REPORT CODE: DB01 APS DATA DESCRIPTION INTERFACE PAGE 5
 SUBSCHEMA REPORT 92/01/21 09:53

NAME CREATED UPDATED REC NO MESSAGE

DMVINQ 90/05/10 90/12/07 1
DMVLST 90/05/10 90/12/07 3

*********** FINAL TOTALS ***********
 TOTAL NUMBER OF DBDS 18
 TOTAL NUMBER OF DBD RECS 530
 TOTAL NUMBER OF PSBS 45
 TOTAL NUMBER OF PSB RECS 93
 TOTAL NUMBER OF FILES 8
 TOTAL NUMBER OF FILE RECS 30
 TOTAL NUMBER OF SUBSCHS 10
 TOTAL NUMBER OF SUBSCH RECS 21
 TOTAL NUMBER OF ENTITIES 63
 TOTAL NUMBER OF RECORDS 623

DDI Statements

Compatibility: IMS and VSAM targets

Category: Importer feature

Description: Identify IMS database segments and VSAM files and their corresponding
COBOL Syntax

DDI statements are comprised of the literal *DDI followed by a
statement type and its applicable parameter parameters. The statement
type identifies what database or file component to import. For
example, database, record or field. Code DDI statements for any
environment as follows:

Column Value

7-10 *DDI

11 Blank

12-14 Statement type

15 Blank

16-18 Keyword parameter
Reference

DDI Statements 183

rfpubb.book Page 183 Tuesday, February 19, 2002 9:56 AM
IMS DB

The DBD statement corresponds to the DBD statement:

*DDI DBD NAME=dbname

The REC statement corresponds to the SEGM statement/copylib:

*DDI REC NAME=cpylibrec|[new-COBOL-recordname],
*DDI SEG=segname, [COPY=membername|[new-copylibname]],
*DDI [GEN01=Y|N]

The FLD statement corresponds to the FIELD and XDFLD
statement/copylib field:

*DDI FLD NAME=cpylibfldname, IMSNAME=fldname,
*DDI [PIC=cpylibpic]

The PSB statement corresponds to the PSB name:

*DDI PSB NAME=PSBname

The PCB statement is a positional, or placeholder statement. It
corresponds to the PCB for which you are assigning an additional set of
names:

*DDI PCB

VSAM DB

The VSM statement corresponds to the VSAM file external ddname:

*DDI VSM DDN=extddname, TYPE=K|E|R, VSPREFIX=fileprefix,
 [CYL|TRK|REC(size)], CISZ(cntlintrvalsize),
 VOL(volname), CAT=catname, [idcamsparms]

The REC statement corresponds to the copylib record name and copylib
file name:

*DDI REC NAME=recname, SHORT=shrtrecname, COPY=membername,
 SOURCE=P|C|, MAXLEN=maxreclen, AVGLEN=avgreclen

The IDX statement is for a keyed file. It corresponds to copylib key field
name and copylib file name:

*DDI IDX NAME=cpylibreckeyfldname, [ALIAS=redefinefld],
 TYPE=P|U|D, KEYLEN=keyfldlen, OFFSET=position,
 DDN=indxddname, PIC=number,[idcamsparms]
Reference

184

rfpubb.book Page 184 Tuesday, February 19, 2002 9:56 AM
The SUB statement identifies the copylib record name(s) used by your
APS program, record processing, batch options, and VSAM file external
ddname:

*DDI SUB NAME=subschemaname, RECORD=recname,
 PROCOPT=A|G|I|D|R, [ACCESS=options], [BLOCK=0],
 [LABEL=STANDARD], [ASSIGN=extddname]

Parameters: ACCESS=options Batch access options. Dynamic for KSDS
files. Sequential for ESDS/RRDS files.

ALIAS=redefinefld If a VSAM file uses multiple copylib
records, this value is the field name
that redfines
NAME=cpylibreckeyfldname.
Maximum 30 characters.

ASSIGN=extddname VSAM file external ddname. Default is
the value of the *DDI VSM statement
DDN parameter. Maximum 8
characters.

AVGLEN=avgreclen Average record length. Default is the
value of MAXLEN.

CAT=catname Catalog name.

CISZ(cntlintrvalsize) Control interval size. Default is
CISZ(4096).

COPY=membername Copylib member name. Default for IMS
is SEGM NAME=. Maximum 8
characters.

CYL|TRK|REC(size) Size of file in cylinders, tracks or
records.

DDN=extddname VSAM file external ddname. Maximum
8 characters.

DDN=indxddname DDNAME of the index. Default is
primary=ddname. Maximum 24
characters.

GEN01=Y|N GEN01=Y Indicates segname is an 01
level name.

GEN01=N Overrides the value of &GEN-
DB-REC-01-NAMES flag.
Reference

DDI Statements 185

rfpubb.book Page 185 Tuesday, February 19, 2002 9:56 AM
idcamskeywrds Other IDCAMS keywords. Code exactly
as they appear on IDCAMS control
statements.

IMSNAME=fieldname DBD value of FIELD NAME= or XDFLD
NAME=. Maximum 8 characters.

IMSNAME=new-COBOL fldname New copylib name for the new COBOL
record .

KEYLEN=keyfldlen Length of key field. Maximum 4
characters.

MAXLEN=maxreclen Maximum record length.

NAME=copylibfldname Copylib field name. Default is DBD
value of FIELD NAME= or XDFLD
NAME=. Maximum 30 characters.

NAME=cpylibrec Copylib record name. Default is DBD
value of SEGM NAME=. Maximum 30
characters.

NAME=cpylibreckey fldname VSAM file copylib record key field
name. Maximum 30 characters.

NAME=dbname DBD name. Maximum 8 characters.

NAME=new-COBOL-fldname New COBOL record name of the
segment.

NAME=new-COBOL-recname New COBOL record name of the
segment.

NAME=PSBname Specifies the program PSB name.

NAME=recname VSAM file record name. Maximum 30
characters.

NAME=subschemaname A unique subschema name. Maximum
8 characters.

OFFSET=position The offset position of the field relative
to the beginning of the record (first
position is 0). Maximum characters.

PIC=cpylibpic COBOL picture clause. Default is x(n).
n=the value of the BYTES parameter in
the DBD. Maximum 24 characters.
Reference

186

rfpubb.book Page 186 Tuesday, February 19, 2002 9:56 AM
Comments:

IMS DB/DC • When APS generates DDI symbols, it converts special characters that
appear in IMS data names follows:

• $ converts to an X

• # converts to an Y

• @ converts to a Z

• To access the index database itself, define the index DBD to the APS
Generator, and include PCBs for it in PSBs defined to the APS
Generator.

PIC=keypicture Picture of keyed field. Required for
non-alphanumeric. Maximum 24
characters.

PROCOPT=A|G|I|D|R Process control options. Values are:
A(ll); G(et); I(nsert); D(elete); R(eplace).

RECORD=recname Value of the first or only DDI REC
statement NAME=recname. Maximum
30 characters.

SEG=segname DBD value of SEGM NAME=. If you
supplement or override this statement
segname is as it appears in the
program PSB. Maximum 8 characters.

SHORT=shrtrecname Short record name. Maximum 8
characters.

SOURCE=P|C Method used to put copylib members
in program. Values are: P (via an APS
%INCLUDE statement). C(via COBOL
COPY command).

TYPE=K|E|R VSAM file type. Values are: K(eyed);
E(ntry); R(elative). Default is K.

TYPE=P|U|D Index type. Values are P(rimary);
U(nique); D(uplicate). The first index
must be primary.

VOL(name) Volume name.

VSPREFIX=fileprefix VSAM file prefix.
Reference

DDI Statements 187

rfpubb.book Page 187 Tuesday, February 19, 2002 9:56 AM
• If a PSB contains multiple PCBs for the database, use the VIEW or
PCB parameter when you code the database macro to ensure that
the correct PCB is used for the generated call.

• Select option 3, Generate DDISYMB symbols from DDIFILE, only if
you want to regenerate DDI symbols that have been previously
generated by following the procedures above.

Examples: IMS DB

DBD and copylib DDI statements.

DBD NAME=DBD1 etc.
SEGM NAME=S1 etc.
FIELD NAME=S1FLD etc.
SEGM NAME=S2 etc.
FIELD NAME=S2FLD etc.

Copylib file (S1)
01 SALES-REC.
 05 REGION-FLD PIC 9(03).
 .
 .
Copylib file (S2)
01 CUST-REC.
 05 LOCATION-FLD PIC X(30).
 .
 .

DDI statements applicable to the above DBD statements and copylib.

KYWD 12-+----20---+----30---+----40---+----50---+-
*DDI DBD NAME=DBD1
*DDI REC NAME=SALES-REC,SEG=S1,COPY=S1,
*DDI GEN01=Y
*DDI FLD NAME=REGION-FLD,IMSNAME=S1FLD,PIC=9(03)
*DDI REC NAME=CUST-REC,SEG=S2,COPY=S2,
*DDI GEN01=Y
*DDI FLD NAME=LOCATION-FLD,IMSNAME=S2FLD,PIC=X(30)

Fast path DBDs and PSBs.

DBD NAME=DEDBASE,ACCESS=DEDB,RMNAME=DEDBRAND
AREA DEVICE=3380,SIZE=1024,UOW=(20,5),ROOT=(40,10),DD1=AREA1
AREA DEVICE=3380,SIZE=1024,UOW=(20,5),ROOT=(40,10),DD1=AREA2
AREA DEVICE=3380,SIZE=1024,UOW=(20,5),ROOT=(40,10),DD1=AREA3
SEGM NAME=CUST,PARENT=0,BYTES=(80,80)
FIELD START=03,BYTES=06,TYPE=C,NAME=(ACCTNO,SEQ,U)
Reference

188

rfpubb.book Page 188 Tuesday, February 19, 2002 9:56 AM
FIELD START=09,BYTES=09,TYPE=C,NAME=SSA
FIELD START=18,BYTES=30,TYPE=C,NAME=NAME
FIELD START=48,BYTES=30,TYPE=C,NAME=ADDRESS
SEGM NAME=SUMM,PARENT=CUST,BYTES=(30,30),TYPE=SEQ
FIELD START=03,BYTES=10,TYPE=C,NAME=ACTION
FIELD START=13,BYTES=08,TYPE=C,NAME=AMOUNT
FIELD START=21,BYTES=10,TYPE=C,NAME=TELLER
SEGM NAME=TRAN,PARENT=CUST,BYTES=(50,50),TYPE=DIR, X
 SSPTR=8
FIELD START=03,BYTES=06,TYPE=C,NAME=(TRANDATE,SEQ)
FIELD START=09,BYTES=06,TYPE=C,NAME=TRANAMT
FIELD START=15,BYTES=15,TYPE=C,NAME=TYPE
FIELD START=30,BYTES=08,TYPE=C,NAME=BALANCE
SEGM NAME=CHARGE,PARENT=TRAN,BYTES=(30,30),TYPE=DIR,SSPTR=5
FIELD START=03,BYTES=06,TYPE=C,NAME=DATE
FIELD START=09,BYTES=06,TYPE=C,NAME=SERVCHAR
FIELD START=15,BYTES=10,TYPE=C,NAME=TYPECHAR
DBDGEN
FINISH
END

DDI statements:

*DDI DBD NAME=DEDBASE
*DDI REC NAME=CUSTOMER-RECORD,SEG=CUST,COPY=CUST
*DDI FLD NAME=CUSTOMER-ACCT-NO,IMSNAME=ACCTNO
*DDI FLD NAME=CUSTOMER-SSA,IMSNAME=SSA
*DDI FLD NAME=CUSTOMER-ADDRESS,IMSNAME=ADDRESS
*DDI REC NAME=SUMMARY-RECORD,SEG=SUMM,COPY=SUMM
*DDI FLD NAME=SUMMARY-ACTION,IMSNAME=ACTION
*DDI FLD NAME=SUMMARY-AMOUNT,IMSNAME=AMOUNT
*DDI FLD NAME=SUMMARY-TELLER,IMSNAME=TELLER
*DDI REC NAME=TRANSACTION-RECORD,SEG=TRAN,COPY=TRAN
*DDI FLD NAME=TRANSACTION-TRANDATE,IMSNAME=TRANDATE
*DDI FLD NAME=TRANSACTION-AMOUNT,IMSNAME=TRANAMT
*DDI FLD NAME=TRANSACTION-TYPE,IMSNAME=TYPE
*DDI FLD NAME=TRANSACTION-BALANCE,IMSNAME=BALANCE
*DDI REC NAME=CHARGE-RECORD,SEG=CHARGE,COPY=CHARGE
*DDI FLD NAME=CHARGE-DATE,IMSNAME=DATE
*DDI FLD NAME=CHARGE-SERVCHAR,IMSNAME=SERVCHAR
*DDI FLD NAME=CHARGE-TYPECHAR,IMSNAME=TYPECHAR

DBD NAME=DEDB1,ACCESS=DEDB,
 RMNAME=(DBFHD040)
AREA DD1=DEDB1DD,DEVICE=3380,SIZE=1024,
 ROOT=(10,5),UOW=(15,10)
SEGM NAME=A,BYTES=(48,27),PARENT=0
FIELD NAME=(A1,SEQ,U),BYTES=10,START=3,TYPE=C
Reference

DDI Statements 189

rfpubb.book Page 189 Tuesday, February 19, 2002 9:56 AM
SEGM NAME=B,BYTES=(24,11),PARENT=((A,SNGL)),TYPE=DIR,SSPTR=5
FIELD NAME=(B1,SEQ,U),BYTES=5,START=3,TYPE=C
FIELD NAME=B2,BYTES=5,START=10,TYPE=C
SEGM NAME=C,BYTES=(34,32),PARENT=((B,DBLE)),RULES=(,HERE),
 TYPE=DIR
FIELD NAME=(C1,SEQ,U),BYTES=20,START=3,TYPE=C
SEGM NAME=D,BYTES=(52,33),PARENT=((A,DBLE)),TYPE=DIR,SSPTR=3
FIELD NAME=(D1,SEQ,U),BYTES=2,START=3,TYPE=C
SEGM NAME=E,BYTES=(52,33),PARENT=((A,DBLE)),RULES=(,FIRST),
 TYPE=DIR
FIELD NAME=(E1,SEQ,U),BYTES=2,START=3,TYPE=C
DBDGEN
FINISH
END

DDI *DDI DBD NAME=DEDB1

DBD NAME=MSDB1,ACCESS=MSDB
DATASET REL=NO
SEGM NAME=A,BYTES=4
FIELD NAME=(A1,SEQ,U),BYTES=1,START=1,TYPE=X
DBDGEN
FINISH
END

*DDI DBD NAME=MSDB1

PSB
PCB TYPE=DB,DBDNAME=DEDB1,PROCOPT=A,KEYLEN=35
SENSEG NAME=A,PARENT=0
SENSEG NAME=B,PARENT=A,SSPTR=((1,R),(2,U),(5))
SENSEG NAME=C,PARENT=B
PCB TYPE=DB,DBDNAME=DEDBASE,PROCOPT=A,KEYLEN=12
SENSEG NAME=CUST,PARENT=0
SENSEG NAME=SUMM,PARENT=CUST
SENSEG NAME=TRAN,PARENT=CUST
PCB TYPE=DB,DBDNAME=MSDB1,PROCOPT=A,KEYLEN=1
SENSEG NAME=A,PARENT=0
PSBGEN PSBNAME=FASTPATH,LANG=COBOL
END

• Copylib for a fixed length KSDS file with three indices accessing one
record.

01 EMPLOYEE-RECORD.
 05 EMPL-EMP-NUM PIC X(06).
 05 EMPL-LAST-NAME PIC X(20).
 05 EMPL-FIRST-INIT PIC X(02).
Reference

190

rfpubb.book Page 190 Tuesday, February 19, 2002 9:56 AM
 05 EMPL-MIDDLE-INIT PIC X(02).
 05 EMPL-SOURCE-CODE PIC X(06).
 05 EMPL-SALARY PIC 9(7)COMP-3.
 05 EMPL-SCHED-HOURS PIC 9(04).
 05 EMPL-ACTIVE-FLAG PIC X(02).
 05 EMPL-LAST-PROM-DATE PIC X(06).
 05 EMPL-LAST-EXT-DATE PIC X(06).
 05 EMPL-START-YR PIC X(02).

DDI for fixed length KSDS file.

KYWD 12-+----20---+----30---+----40---+----50---+---
*DDI VSM DDN=EMPLOYEE
*DDI TYPE=K,VSPREFIX=VQAC6550.APS17X,
*DDI TRK(100 10),CISZ(8192),VOL(SAGE03),
*DDI REPLICATE,FSPC(15 15),SHR(1 3),NOIMBED
*DDI REC NAME=EMPLOYEE-RECORD,SHORT=EMPL,
*DDI COPY=EMPLOYEE,SOURCE=P,
*DDI MAXLEN=56
*DDI IDX NAME=EMPL-EMP-NUM,TYPE=P,KEYLEN=6,OFFSET=0,
*DDI DDN=EMPLOYEE,TRK(5 5),VOL(SAGE03)
*DDI IDX NAME=EMPL-SOURCE-CODE,TYPE=D,
*DDI KEYLEN=6,OFFSET=30,DDN=EMPLOYE1,
*DDI TRK(3 3),VOL(SAGE03),NOIMBED
*DDI IDX NAME=EMPL-SALARY,TYPE=D,
*DDI KEYLEN=4,OFFSET=36,DDN=EMPLOYEZ,
*DDI PIC=9(7)COMP-3,TRK(3 3),VOL(SAGE03)
*DDI SUB NAME=SAMPPGM,RECORD=EMPLOYEE-RECORD,PROCOPT=A,
*DDI LABEL=STANDARD,BLOCK=200,ASSIGN=EMPLOYEE

Copylib for a variable length keyed sequential file with one index
accessing multiple records.

% * CICS RECORDS ARE REDEFINED FOR WORKING-STORAGE.
% * MVS RECORDS ARE NOT REDEFINED; ARE PLACED DIRECTLY UNDER
FD.
% IF &APS-MDC = "CICS-TP"
 &VSSUF = " REDEFINES ORDER-RECORD"
% ELSE
 &VSSUF = ""
01 ORDER-RECORD.
 05 ORDER-KEY PIC X(05).
 05 ORDER-RECORD-TYPE PIC X(01).
 05 ORDER-CUST-NUMBER PIC X(07).
 05 ORDER-PART-NUMBER PIC X(07).
 05 ORDER-QUANTITY-ORDERED PIC 9(05).
 05 ORDER-QUANTITY-TYPE PIC X(10).
 05 ORDER-ORDER-AMOUNT PIC 9(05)V99.
Reference

DDI Statements 191

rfpubb.book Page 191 Tuesday, February 19, 2002 9:56 AM
 05 ORDER-ORDER-STATUS PIC X(04).
01 ORDER-PART-RECORD &VSSUF.
 05 FILLER PIC X(06).
 05 PART-NAME PIC X(05).
 05 PART-DESCRIPTION PIC X(25).
 05 PART-SUPPLIER-NBR PIC X(07).
 05 PART-SUPPLIER-NAME PIC X(25).
01 ORDER-DELV-RECORD &VSSUF.
 05 FILLER PIC X(06).
 05 DELV-CONTACT-NAME PIC X(30).
 05 DELV-CONTACT-PHONE PIC X(12).
 05 DELV-ADDRESS PIC X(35).
 05 DELV-SPECIAL-INSTRUCTIONS PIC X(50).

DDI for variable length KSDS files.

KYWD 12-+----20---+----30---+----40---+----50---+---
*DDI VSM DDN=ORDER
*DDI REC NAME=ORDER-RECORD,SHORT=ORDER,COPY=ORDER,SOURCE=P,
*DDI MAXLEN=133,AVGLEN=46
*DDI IDX NAME=ORDER-KEY,TYPE=P,KEYLEN=5,OFFSET=0,DDN=ORDER
*DDI REC NAME=ORDER-PART-RECORD,SHORT=PART,MAXLEN=68
*DDI REC NAME=ORDER-DELV-RECORD,SHORT=DELV,MAXLEN=133
*DDI SUB NAME=ORDERSS,
*DDI RECORD=ORDER-RECORD,PROCOPT=A,
*DDI LABEL=STANDARD,BLOCK=0,ASSIGN=ORDER

DDI statements for generating DDISYMB and IDCAMS.

*DDI VSM DDN=PERSON
*DDI TYPE=K,VSPREFIX=VAPS6550,
*DDI CISZ(4096),VOL(PDVL02),TRK(5 5)
*DDI REC NAME=PERSONNEL-RECORD,SHORT=PERSONEL,
*DDI COPY=PERSONEL,SOURCE=P,MAXLEN=80,PREFIX=PER
*DDI IDX NAME=SSA,ALIAS=SSA-X,TYPE=P,KEYLEN=9,
*DDI OFFSET=0,DDN=PERSON,
*DDI TRK(5,5),VOL(PDVL02)
*DDI IDX NAME=LAST-NAME,TYPE=D,KEYLEN=15,
*DDI OFFSET=9,DDN=PERSON1,
*DDI TRK(5,5),REUSE,VOL(PDVL02)
*DDI IDX NAME=TITLE,TYPE=D,KEYLEN=15,
*DDI OFFSET=24,DDN=PERSON2,
*DDI TRK(5,5),REUSE,VOL(PDVL02)
*DDI SUB NAME=SAMPLE,RECORD=PERSONNEL-RECORD,
*DDI PROCOPT=A

Generated IDCAMS source.

 03590000
Reference

192

rfpubb.book Page 192 Tuesday, February 19, 2002 9:56 AM
DELETE VAPS6550.PERSON.CLUSTER 01550000
 CLUSTER 01610000
 PURGE 01620000
 01640000
IF LASTCC = 8 01650000
THEN 01660000
 SET LASTCC = 00 01670000
 01680000
DEFINE CLUSTER 01690000
 (INDEXED 01760000
 NAME (VAPS6550.PERSON.CLUSTER) 01820000
 UNIQUE) 01980000
 01990000
 DATA 02000000
 (NAME (VAPS6550.PERSON.DATA) 02010000
 TRK(5,5) 02030000
 VOL(PDVL02) 02080000
 RECSZ (80 80) 02130000
 CISZ (4096) 02170000
 KEYS (9 0) 02240000
 SHR (3 3)) 02320000
 02340000
 INDEX 02350000
 (NAME (VAPS6550.PERSON.INDEX) 02360000
 TRK(5,5) 02440000
 VOL(PDVL02) 02460000
 CISZ (1024) 02550000
 SHR (3 3) 02660000
) 02690000
 02710000
 IF LASTCC < 5 02720000
 THEN 02730000
 REPRO 02740000
 INFILE (DD1) 02750000
 ODS (VAPS6550.PERSON.CLUSTER) 02760000
 02770000
 DEF AIX 02890000
 (NAME (VAPS6550.PERSON1.AIX) 02990000
 RELATE (VAPS6550.PERSON.CLUSTER) 03000000
 REUSE 03040000
 TRK(5,5) 03110000
 VOL(PDVL02) 03180000
 RECSZ (256 512) 03220000
 CISZ (1024) 03260000
 KEYS (15 9) 03290000
 NONUNIQUEKEY 03340000
 UPGRADE) 03380000
 DATA 03390000
Reference

DDI Statements 193

rfpubb.book Page 193 Tuesday, February 19, 2002 9:56 AM
 (NAME(VAPS6550.PERSON1.DATA)) 03400000
 INDEX 03410000
 (NAME(VAPS6550.PERSON1.INDEX)) 03420000
 03430000
IF LASTCC < 5 03440000
 THEN 03450000
 BLDINDEX 03460000
 IDS (VAPS6550.PERSON.CLUSTER) 03470000
 ODS (VAPS6550.PERSON1.AIX) 03480000
 03490000
 IF LASTCC < 5 03500000
 THEN 03510000
 DEF PATH 03520000
 (NAME (VAPS6550.PERSON1.PATH) 03530000
 PENT (VAPS6550.PERSON1.AIX) 03540000
 UPDATE) 03550000
 DEF AIX 02890000
 (NAME (VAPS6550.PERSON2.AIX) 02990000
 RELATE (VAPS6550.PERSON.CLUSTER) 03000000
 REUSE 03040000
 TRK(5,5) 03110000
 VOL(PDVL02) 03180000
 RECSZ (256 512) 03220000
 CISZ (1024) 03260000
 KEYS (15 24) 03290000
 NONUNIQUEKEY 03340000
 UPGRADE) 03380000
 DATA 03390000
 (NAME(VAPS6550.PERSON2.DATA)) 03400000
 INDEX 03410000
 (NAME(VAPS6550.PERSON2.INDEX)) 03420000
 03430000
IF LASTCC < 5 03440000
 THEN 03450000
 BLDINDEX 03460000
 IDS (VAPS6550.PERSON.CLUSTER) 03470000
 ODS (VAPS6550.PERSON2.AIX) 03480000
 03490000
 IF LASTCC < 5 03500000
 THEN 03510000
 DEF PATH 03520000
 (NAME (VAPS6550.PERSON2.PATH) 03530000
 PENT (VAPS6550.PERSON2.AIX) 03540000
 UPDATE) 03550000
Reference

194

rfpubb.book Page 194 Tuesday, February 19, 2002 9:56 AM
DDISYMB Flags

Compatibility: SQL target

Description: You can use special DDISYMB flags to suppress or modify DCLGEN
copybook generation. After you generate your subschema and
DDISYMB file, insert these override flags into the DDISYMB file.

Syntax: Flag 1, suppress inclusion of the APS-generated DCLGEN copybook:

&D2-INCLUDED-COPYLIB-copybookname = "YES"|"NO"

Flag 2, specify user override of APS indicator structure generation:

&D2-INCLUDED-IV-copybookname = "YES"|"NO"

Flag 3, specify indicator variable prefix override, overriding the APS
default prefix IND:

&D2-copybookname-IV-PREFIX = "prefixvalue"

Flag 4, specify indicator structure, group-level, override name:

&D2-copybookname-IV-01-NAME = "indicatorvariablename"

Flag 5, specify host structure, group-level override name:

&D2-copybookname-HOST-01-NAME = "01levelname"

Flag 6, generate a value for &D2-copybookname-HOST-01-NAME:

&D2-GLOBAL-DCLGEN-NAME = "YES"|"NO"

Flag 7, override use and generation of the default IND-cursorname
structure:

&D2-USE-CURSOR-IND = "YES"|"NO"

Comments: • Code Flag 1 to:

• Include your own DB2 host variable copybook.

• Suppress inclusion of the corresponding APS-generated DCLGEN
copybook named by copybookname.
Reference

DDISYMB Flags 195

rfpubb.book Page 195 Tuesday, February 19, 2002 9:56 AM
• Code Flag 2 to:

• Include your own indicator variable structure in the copybook or
DB2 DDI symbols for that table.

• Suppress generation of the APS host indicator variable structure
for the table named by copybookname.

• For Flag 2, the APS-generated host indicator variable structure
follows the format:

01 IND-copybookname-REC
 05 IND-colname1
 05 IND-colname2

If you override the host indicator variable structure generated by
APS, you still must conform to the format above. However, you can
override the IND prefix with one of your own. You can specify one
prefix for each host indicator variable structure. The prefix you
create must be supplied to APS via the variable &D2-
copybookname-IV-prefix.

Similarly, you may also override the 01-level name of the host
indicator variable structure. If the 01-level name you choose is not in
the APS format shown above, supply it to APS via the variable &D2-
copybookname-IV-01-name. These two user flags are described
below.

• For Flag 3:

• Code it to substitute a value for the default prefix, IND, on all
indicator variables for a table.

• Include this flag to supply your own indicator variable structure
and if the variable names have a prefix other than IND.

• The prefix you enter can include up to 11 characters.

• Follow the naming convention of prefix-columname for
indicator variable names, where prefix is either IND or a value
you specify in the prefix override. For example, for a table
represented by a copybook named TAB2, the entry:

% &D2-TAB2-IV-PREFIX = "TAB2-IV"

Yields the following indicator variable structure.

01 TAB2-IV-TAB2-REC.
 05 TAB2-IV-colname1
Reference

196

rfpubb.book Page 196 Tuesday, February 19, 2002 9:56 AM
 05 TAB2-IV-colname2
 05 TAB2-IV-colname3
 .
 .
 05 TAB2-IV-colnameN

• If you do not supply this variable, the APS uses the structure
generated for each cursor, cursorname-IND-variable, for cursor
processing.

• For Flag 4:

• Code it to create your own 01-level name for the indicator
variable structure. Indicatorvariablename replaces the APS-
generated 01-level name. The default for the 01-level name is
prefixcolumnamerec.

• Include this flag to supply an override indicator variable
structure when the 01-level name does not conform to the APS
naming convention.

• The maximum length of indicatorvariablename is 30 characters.

• Indicator variable names must follow the naming convention of
prefix-columname, in which prefix is either IND or a value you
specify in &D2-copybookname-IV-PREFIX. For example, a table
represented by a copybook named TAB2, the entry:

% &D2-TAB2-IV-01-NAME = "TAB2-IND-VAR"

Yields the following indicator variable structure:

01 TAB2-IND-VAR.
 05 IND-colname1
 05 IND-colname2
 05 IND-colname3
 .
 .
 05 IND-colnameN

• If you do not supply this variable, the APS uses the structure
generated for each cursor, cursorname-IND-variable, for cursor
processing.

• Code Flag 5 to change the default host structure after the DCLGEN
process creates it. 01levelname replaces the APS-generated 01-level
name, copylibnamerec. APS uses your host 01-level name when it
qualifies host variables during SQL generation.
Reference

DDISYMB Flags 197

rfpubb.book Page 197 Tuesday, February 19, 2002 9:56 AM
• You can use Flag 6, rather than Flag 5, to generate a name for all
your tables. In the APS CNTL file APDB2IN, set the flag &D2-
GLOBAL-DCLGEN-NAME to yes. APS generates a value for &D2-
copybookname-HOST-01-NAME, using the IBM DCLGEN convention
of DCLtablename. Defining this flag in APDB2IN overrides manually-
coded definitions in all applications.

• Use Flag 7 to override the default indicator variable structure, IND-
cursorname with the structure IND-tablerec. APS generates the
default indicator variable structure, as follows:

01 TABLE-REC.
 05 COL1 PIC X(4).
 05 COL2 PIC X(8).
01 IND-TABLE-REC.
 05 IND-COL1 PIC S9(4) COMP.
01 IND-CURSOR1.
 05 IND-COL1 PIC S9(4) COMP.
 .
 .
 .
 DB-FETCH CURSOR CURSOR1
 IF OK-ON-REC
 IF IND-COL1 OF IND-CURSOR1 = +0
 MAP-COL1 = COL1 in TABLE-REC

Note: Using the host indicator variable structure can simplify your code
because the one indicator variable structure can be used repeatedly. In
nested processes, however, the host indicator variables are overwritten
by each successive nesting level.

Examples: Substitute the prefix TAB2-IV for the default prefix IND for all indicator
variables in a table represented by copybookname and for the 01-level
name.

% &D2-copybookname-IV-PREFIX = "TAB2-IV"

Substitute a different 01-level name in the indicator variable structure
generated by APS.

% &D2-copybookname-IV-01-NAME = "USER-IND-VAR-NAME"

Sample source code:

% &D2-D2MASTER-HOST-01-NAME = "XYZ-D2MASTER-STRUCT"
Reference

198

rfpubb.book Page 198 Tuesday, February 19, 2002 9:56 AM
**
* COBOL DECLARATION FOR TABLE D2MASTER
* 01-LEVEL NAME POST-PROCESSED
**
01 XYZ-D2MASTER-STRUCT.
 10 PM-PART-NO PIC X(8).
 10 PM-NEW-PART-NO PIC X(8).
 10 PM-OLD-PART-NO PIC X(8).
 10 PM-PART-SHORT-DESC PIC X(13).
 10 PM-UNITS PIC 9(5).
 10 PM-UNIT-BASE-PRICE PIC 9(5).
 10 PM-DIMENSIONS PIC X(8).
 10 PM-COLOR PIC X(8).

Generated SQL code using &D2-D2MASTER-HOST-01-NAME

EXEC SQL SELECT ...
INTO XYZ-D2MASTER-STRUCT.PM-PART-NO,
XYZ-D2MASTER-STRUCT.PM-NEW-PART-NO,
 .
 .
 .
 XYZ-D2MASTER-STRUCT.PM-COLOR,
FROM ...
WHERE ...
END-EXEC

Generated SQL code without using &D2-D2MASTER-HOST-01-NAME

EXEC SQL SELECT ...
INTO D2TAB-REC.PM-PART-NO,
 D2TAB-REC.PM-NEW-PART-NO,
 .
 .
 .
 D2TAB-REC.PM-COLOR,
FROM ...
WHERE ...
END-EXEC
Reference

DECL 199

rfpubb.book Page 199 Tuesday, February 19, 2002 9:56 AM
DECL

Category: Program Painter and Specification Editor parameter

Compatibility: ISPF Dialog and ISPF prototyping batch programs; CICS and IMS DC
programs without screens

Description: Create Declarative Section statements only--not sections or paragraphs.

See also DPAR and USE BEFORE REPORTING for creating Declarative
Section statements, paragraphs, and sections.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 DECL declarativestatements

Comments: • We recommend that you code declaratives at the end of your
program, because APS generates the END DECLARATIVES statement
when either:

• It encounters another keyword in the KYWD column.

• The Declaratives Section is at the end of the program.

• Do not code the DECLARATIVE SECTION header or the END
DECLARATIVES statement. APS generates these for you.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 DECL declarative statement
 declarative statement

Generated APS source:

DECLARATIVES.
declarative statement
declarative statement
END DECLARATIVES
Reference

200

rfpubb.book Page 200 Tuesday, February 19, 2002 9:56 AM
DLG-ISPEXEC

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Invoke ISPF services that use CALL ISPEXEC format.

Syntax: DLG-ISPEXEC commandproceduresyntax

Parameters:

Comment: Data field DLG-ISPEXEC-RC contains the return code after the call
execution.

Examples: Use the CONTROL service to disable the user’s split screen capability.

DLG-ISPEXEC CONTROL SPLIT DISABLE
IF DLG-ISPEXEC-RC = 8
 /* SPLIT SCREEN ALREADY DISABLED
 TRUE SPLIT-SCREEN-DISABLED
ELSE-IF DLG-ISPEXEC-RC = 0
 /* SPLIT SCREEN DISABLED
 TRUE SPLIT-SCREEN-DISABLED

Define an application message library to search before the default
message library.

DLG-ISPEXEC LIBDEF ISPMLIB DATASET ID(’ABC.DEF.ISPMLIB’)
IF DLG-ISPEXEC-RC = 0
 /* OK
ELSE
 DISPLAY ’??? LIBDEF ISPMLIB ERROR, RC = ’ DLG-ISPEXEC-RC

Invoke a command procedure to allocate application files.

DLG-ISPEXEC SELECT CMD(%ALOCFILE ALLOC)
IF DLG-ISPEXEC-RC = 0
 /* OK
ELSE
 DISPLAY ’??? ALOCFILE ERROR, RC = ’ DLG-ISPEXEC-RC

commandproceduresyntax Syntax for call executed in Command
Procedure (CLIST) format.
Reference

DLG-ISREDIT 201

rfpubb.book Page 201 Tuesday, February 19, 2002 9:56 AM
DLG-ISREDIT

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Invoke ISREDIT services.

Syntax: DLG-ISREDIT commandproceduresyntax

Parameter:

Comment: Data field DLG-ISREDIT-RC contains the return code after call execution.

Example: Determine if the member is new or existing. DLG-VDEFINE links ISPF
variable &LASTLINE to COBOL variable LASTLINE.

DLG-VDEFINE LASTLINE &APS-FULL
DLG-ISREDIT (LASTLINE) = LINENUM .ZLAST
IF LASTLINE = 0
 /* NEW MEMBER
 TRUE NEW-MEMBER

DLG-SETMSG

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Display a message on the next panel; predefine message text and
attributes.

Syntax: Format 1, SETMSG definition:

DLG-SETMSG
... [SHORT ’shortmessagetext’]
... [LONG ’longmessagetext’]

commandproceduresyntax Syntax for call executed in Command
Procedure (CLIST) format
Reference

202

rfpubb.book Page 202 Tuesday, February 19, 2002 9:56 AM
... [ALARM ’YES’|’NO’]

... [HELP ’helppanelname’]

Format 2, SETMSG definition for execution by Format 3:

DLG-SETMSG erroridentifier
... [SHORT ’shortmessagetext’]
... [LONG ’longmessagetext’]
... [ALARM ’YES’|’NO’]
... [HELP ’helppanelname’]

Format 3, SETMSG execution

DLG-SETMSG [erroridentifier|messageID]

Parameters:

Comments: • If you use Format 2, include at least one of the keywords.

• Data field DLG-SETMSG-RC checks the return code after call
execution.

Examples: Define a message for an invalid option condition. INVALID-OPT (error
identifier) identifies the message information to display when DLG-
SETMSG is invoked in the execution format.

DLG-SETMSG INVALID-OPT
... SHORT ’INVALID OPTION’
... LONG ’ENTER ONE OF THE LISTED OPTIONS’
... ALARM ’YES’

ALARM ’YES’|’NO’ Sound alarm when screen displays.

erroridentifier Unique name referencing predefined message
text and attributes.

HELP ’help
panelname’

Help panel that displays via PF1.

messageID ISPF MSGID for SETMSG service.

LONG ’long
messagetext’

Display text in long message field when the end
user presses PF1 for the first time. Messagetext
must fit on the same line as LONG.

SHORT ’short
messagetext’

Display text in short message field. Messages
longer than 24 characters can cause truncation
errors. Messagetext must fit on the same line as
SHORT.
Reference

DLG-VCOPY 203

rfpubb.book Page 203 Tuesday, February 19, 2002 9:56 AM
Then, display the invalid option message.

IF SCRA-OPTION = ’value’
 /* VALID CONDITION
ELSE
 DLG-SETMSG INVALID-OPT

DLG-VCOPY

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Copy data from a Dialog variable to a COBOL program variable and
generate the Working-Storage entry for the COBOL variable, if the
COBOL level is specified.

Syntax: DLG-VCOPY [COBOLlevel] COBOLvariable
... [[FROM] dialogvariable]
... [PIC COBOLpicture]|LEN value
... [GENONLY]

Parameters:

Comments: • Code FROM dialogvariable on the same line as COBOLvariable.

• Coding COBOLlevel generates COBOLvariable Working-Storage;
otherwise, define the COBOL variable in Working-Storage.

COBOLlevel COBOLvariable level number.

COBOLvariable COBOL data name the call processes.

FROM dialog
variable

ISPF Dialog variable where data comes from;
default is COBOLvariable, truncated to eight
characters.

GENONLY Define COBOLvariable data item in Working-
Storage only.

LEN value COBOLvariable length; can be numeric integer,
COBOL variable, or arithmetic expression.

PIC COBOLpicture COBOLvariable picture; default is
alphanumeric.
Reference

204

rfpubb.book Page 204 Tuesday, February 19, 2002 9:56 AM
• Data field DLG-VCOPY-RC contains the return code after call
execution.

Examples: Copy data from a system variable into a screen field. The call does not
generate the COBOL variable because the COBOL level number is not
coded.

DLG-VCOPY SCRA-ZUSER FROM ZUSER LEN 8

Copy data from a system variable into a Working-Storage variable.
Coding the COBOL level number generates the COBOL variable.

DLG-VCOPY 01 WS-LONG-ERROR-MESSAGE PIC X(78) FROM ZERRLM

DLG-VDEFINE

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Establish a link between a Dialog function pool variable and a COBOL
program variable.

Syntax: DLG-VDEFINE [COBOLlevel] COBOLvariable
... [[AS] dialogvariable]
... [PIC COBOLpicture]|LEN value
... [GENONLY]

Parameters: AS dialog
variable

ISPF Dialog variable where data links from;
default is COBOLvariable, truncated to eight
characters.

COBOLlevel COBOLvariable level number.

COBOLvariable COBOL data name the call processes.

GENONLY Define the COBOLvariable data item in Working-
Storage only.
Reference

DLG-VDELETE 205

rfpubb.book Page 205 Tuesday, February 19, 2002 9:56 AM
Comments: • Code AS dialogvariable on the same line as COBOLvariable.

• NTRY automatically links any panel variables to screen field names.

• Coding COBOLlevel generates COBOLvariable in Working-Storage;
otherwise, define the COBOL variable in Working-Storage.

• Data field DLG-VDEFINE-RC checks the return code after call
execution.

Example: Establish a link between function pool variable COMDATA and COBOL
variable WS-COMM-DATA. Coding the COBOL level number generates
the COBOL data name.

DLG-VDEFINE 01 WS-COMM-DATA PIC X(150) AS COMDATA

DLG-VDELETE

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Remove the Dialog variables, previously defined by VDEFINE, from the
function pool.

Syntax: DLG-VDELETE dialogvariable|*

Parameters:

Comments: • Coding an asterisk deletes the variables according to the value of
the control variable &DLG-AUTO-VARIABLE-VDELETE.

• Data field DLG-VDELETE-RC contains the return code after call
execution.

LEN value COBOLvariable length; can be numeric integer,
COBOL variable, or arithmetic expression.

PIC COBOLpicture COBOLvariable picture; default is alphanumeric.

dialogvariable Delete a specific ISPF Dialog variable.

* (asterisk) Delete all variables.
Reference

206

rfpubb.book Page 206 Tuesday, February 19, 2002 9:56 AM
Example: Remove the link between function pool variable COMDATA and COBOL
variable WS-COMM-DATA.

DLG-VDEFINE 01 WS-COMM-DATA LEN(150)
... AS COMDATA
DLG-VDELETE COMDATA

DLG-VREPLACE

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Move data from a COBOL program variable to an ISPF function pool
variable.

Syntax: DLG-VREPLACE [COBOLlevel] COBOLvariable
... [[INTO] dialogvariable]
... [PIC COBOLpicture]|LEN value
... [GENONLY]

Parameters:

Comments: • Code INTO dialogvariable on the same line as COBOLvariable.

• Coding COBOLlevel generates COBOLvariable in Working-Storage;
otherwise, define the COBOL variable in Working-Storage.

COBOLlevel COBOLvariable level number.

COBOLvariable COBOL data name the call processes.

GENONLY Define COBOLvariable data item in Working-
Storage only.

INTO dialog
variable

ISPF function pool variable data replaces;
default is COBOLvariable, truncated to eight
characters.

LEN value COBOLvariable length; can be numeric integer,
COBOL variable, or arithmetic expression.

PIC COBOLpicture COBOLvariable picture; default is alphanumeric.
Reference

DLG-VRESET 207

rfpubb.book Page 207 Tuesday, February 19, 2002 9:56 AM
Example: Move a new value to the function pool variable ZPF01 and invoke ISPF
help services with PF01.

DLG-VREPLACE 01 WS-PF01-HELP PIC X(04) VALUE ’HELP’ INTO ZPF01

DLG-VRESET

Category: Data communication call (see Data Communication Calls)

Compatibility: ISPF Dialog target

Description: Reset all program function pool variables and delete the links between
COBOL variables and Dialog variables within the function pool.

Syntax: DLG-VRESET

Comment: Data field DLG-VRESET-RC contains the return code after call execution.

DPAR

Category: Program Painter and Specification Editor parameter (see Keywords)

Compatibility: ISPF Dialog and ISPF prototyping programs; CICS and IMS DC batch
programs and reports

Description: Create a Declarative Section or section paragraph--not declarative
statements.

See also DECL and USE BEFORE REPORTING for creating Declarative
Section statements, paragraphs, and sections.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 DPAR sectionname SECTION
 USE declarativesentence
[DPAR paragraphname
Reference

208

rfpubb.book Page 208 Tuesday, February 19, 2002 9:56 AM
 paragraphstatements]

Parameters:

Comments: • We recommend that you code declaratives at the end of your
program, because APS generates the END DECLARATIVES statement
when either:

• It encounters another parameter in the KYWD column.

• The Declaratives Section is at the end of the program.

• Do not code the DECLARATIVE SECTION header and the END
DECLARATIVES statements. APS generates these for you.

Example: Program Painter code:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60---
*----70-
 DPAR DUMMY-FOOTER SECTION
 USE BEFORE REPORTING FOOTER-DUMMY
 DPAR DUMMY-FOOTER-PARA
 MOVE TOTAL-DIFF TO TIME-TOTAL
 SUPPRESS PRINTING
 DPAR TOTAL-FOOT-SECTION SECTION
 USE BEFORE REPORTING TOTAL-FOOT
 TOTAL-FOOT-PARA
 TIME-AVERAGE = TIME-TOTAL / AVERAGE-CNT
 CALL-PERCENTAGE = (HALF-HOUR-CALLS / AVERAGE-CNT)
 ... * 100
 MOVE HALF-HOUR-CALLS TO HOLD-CALLS
 ADD HOLD-CALLS TO HALF-HOUR-CNT
 MOVE ZERO TO HALF-HOUR-CALLS
 DPAR CONTROL-FOOTING-FINAL SECTION
 USE BEFORE REPORTING CNTL-FT-GP
 DPAR CONTROL-FOOTING-FINAL-PARA
 IF SYSIN-TRACKER NOT = ’CTSALL’
 SUPPRESS PRINTING
 ELSE
 FINAL-PERCENTAGE =
 (HALF-HOUR-CNT / FINAL-PROB-CNT * 100)

sectionname Specify Section paragraph.

USE declarative
sentence

APS supports the USE clause with the exception
of USE AFTER DEBUGGING, which is not
supported.
Reference

DS 209

rfpubb.book Page 209 Tuesday, February 19, 2002 9:56 AM
Generated code:

 DECLARATIVES.

 DUMMY-FOOTER SECTION.
 USE BEFORE REPORTING FOOTER-DUMMY
 DUMMY-FOOTER-PARA.
 MOVE TOTAL-DIFF TO TIME-TOTAL
 SUPPRESS PRINTING
 TOTAL-FOOT-SECTION SECTION.
 USE BEFORE REPORTING TOTAL-FOOT
 $TOTAL-FOOT-PARA
 TIME-AVERAGE = TIME-TOTAL / AVERAGE-CNT
 CALL-PERCENTAGE = (HALF-HOUR-CALLS / AVERAGE-CNT)
 ... * 100
 MOVE HALF-HOUR-CALLS TO HOLD-CALLS
 ADD HOLD-CALLS TO HALF-HOUR-CNT
 MOVE ZERO TO HALF-HOUR-CALLS
 CONTROL-FOOTING-FINAL SECTION.
 USE BEFORE REPORTING CNTL-FT-GP
 CONTROL-FOOTING-FINAL-PARA.
 IF SYSIN-TRACKER NOT = ’CTSALL’
 SUPPRESS PRINTING
 ELSE
 FINAL-PERCENTAGE =
 (HALF-HOUR-CNT / FINAL-PROB-CNT * 100)

 END DECLARATIVES

DS

Category: Program Painter and Specification Editor parameter (see Keywords)

Description: In your program, include a data structure created in the Data Structure
Painter and in that format.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 DS[nn] datastructurename

Comments: • Nn is the beginning level number for the data structure entity. This
is useful when concatenating multiple data structure entities in the
Reference

210

rfpubb.book Page 210 Tuesday, February 19, 2002 9:56 AM
same program. Nn overrides the default 01-level created with the
REC parameter in the Data Structure Painter.

• The preceding section parameter determines the placement of a
data structure in the generated program. Associated section
keywords are

Entity Content Report (MS02)

Category: APS-generated report (see Application Reports)

Description: The Entity Content Report lists the following information for each
component of an application.

• The painter where you create the component

• The component name

• The date when the component was created

• The date when the component was last updated

• The title of the component

You can produce a report for one type of component, or all types. If you
include all types, the report provides a separate section for components
by painter, with the painters arranged alphabetically.

This report helps you track the status of an evolving application. Use it
to verify which components have been created and modified as
planned.

FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)

LK Linkage Section (see LK)
Reference

211

rfpubb.book Page 211 Tuesday, February 19, 2002 9:56 AM
Comments: • Produce the Entity Content Report from the Documentation Facility.

• You can limit the report to components created or updated on or
between the dates you specify. If you do not specify any dates, the
report includes all components currently in the application.

Example:
 CLSAPS.CLS2
SELECTION CRITERIA: ALL
 CREATE DATE > 00/00/00
 CREATE DATE < 99/99/99
SORTED BY: TYPE/NAME
**

 CREATE UPDATE
TYPE NAME DATE DATE TITLE
---- ---- ------ ------ -----

APPL AEDEMO 10/20/89 02/16/90
APPL BCAPPL 11/07/90 11/07/90
APPL BFAPPL 11/07/90 11/07/90
.
.
CNIO PADEMO 08/13/90 08/15/90 CUSTOMER/ORDER MAIN MENU
CNIO PBDEMO 08/13/90 08/15/90 PARTS ORDER MAIN MENU
CNIO PCDEMO 08/13/90 08/15/90 CUSTOMER ORDER MAIN MENU
.
.
DATA APFIELDS 06/06/90 06/06/90 *** NOT AVAILABLE ***
DATA BATCH1 07/13/89 07/13/89 *** NOT AVAILABLE ***
DATA CONDATA 09/19/89 09/19/89 *** NOT AVAILABLE
.

REPORT CODE: MS02 APS APPLICATION DICTIONARY PAGE 4
 CONTENT REPORT 06/17/92 15:26
 CLSAPS.CLS2
SELECTION CRITERIA: ALL
 CREATE DATE > 00/00/00
 CREATE DATE < 99/99/99
SORTED BY: TYPE/NAME
**

 CREATE UPDATE
TYPE NAME DATE DATE TITLE
---- -------- -------- -------- --
Reference

212

rfpubb.book Page 212 Tuesday, February 19, 2002 9:56 AM
PROG APP2 12/17/90 12/18/90
PROG EVOM 01/10/91 01/10/91
PROG EVPL 01/10/91 01/10/91
.
.
REPT COSTRPT 07/27/90 07/27/90 *** NOT AVAILABLE ***
REPT MERPT 08/24/90 08/24/90 *** NOT AVAILABLE ***
REPT T1RPT 07/27/90 07/27/90 *** NOT AVAILABLE ***
SCRN AAAAA 06/04/90 06/07/90 TEST SCREEN
SCRN DLMENU 03/29/90 03/29/90
.
.
 APPLICATIONS: 45
 SCENARIOS: 43
DATA-STRUCTURES: 27
 PROGRAMS: 93
 REPORTS: 3
 SCREENS: 112

Entity Cross Reference (MD01)

Category: APS-generated report (see Application Reports)

Description: The Entity Cross Reference Report provides a list of application
components and the painters where you create the components. Use
this report for impact analysis, when you need to find the components
affected by a proposed change. For example, when a data structure
changes, that can affect components in a variety of applications and
programs. This report can show at a glance all of the affected
components that reference a particular data structure.

The report has a section for each cross-referenced component. The
report arranges the associated components in alphabetical order, along
with the type of each component and a description of it. The report
ends with the total number of cross-referenced components.

Comment: Produce the Entity Cross Reference report from the Documentation
Facility.
Reference

Entity Cross Reference (MD01) 213

rfpubb.book Page 213 Tuesday, February 19, 2002 9:56 AM
Example:

REPORT CODE: MD01 APS APPLICATION DICTIONARY PAGE 1
 ENTITY CROSS REFERENCE 01/17/92 08:48
MKTAPS.MKT2
SELECTION CRITERIA: PROGRAM
 ENTITY NAME = ADEMO

ENTITY: ADEMO CREATED: 09/17/90
TITLE: UPDATED: 09/18/90

ASSOCIATED ENTITY TYPE TITLE

 *** NO ASSOCIATED ENTITIES FOUND FOR THIS SELECTION ***

REPORT CODE: MD01 APS APPLICATION DICTIONARY PAGE 99
 ENTITY CROSS REFERENCE 01/17/92 08:48
MKTAPS.MKT2
SELECTION CRITERIA: PROGRAM
 ENTITY NAME = ALL

ENTITY: TDCM CREATED: 03/19/90
TITLE: UPDATED: 09/17/90

ASSOCIATED ENTITY TYPE TITLE

MVS21 APSAPPL
TDDEMO APSAPPL
TDCM APSEXPS

REPORT CODE: MD01 APS APPLICATION DICTIONARY PAGE 100
 ENTITY CROSS REFERENCE 01/17/92 08:48
MKTAPS.MKT2
SELECTION CRITERIA: PROGRAM
 ENTITY NAME = ALL

ENTITY: TDCS CREATED: 04/26/90
TITLE: UPDATED: 08/24/90

ASSOCIATED ENTITY TYPE TITLE

MVS21 APSAPPL
TDDEMO APSAPPL
TDCS APSEXPS

TOTAL NUMBER OF DEFINED PROGRAMS - 60
TOTAL NUMBER OF UNDEFINED PROGRAMS - 48
Reference

214

rfpubb.book Page 214 Tuesday, February 19, 2002 9:56 AM
Entity Parts List (EN01)

Category: APS-generated report (see Application Reports)

Description: The Entity Parts List Report catalogs the components of one or more
selected applications, data structures, programs, report mock-ups,
screens, subschemas, user macros, APS macros, or COPYLIBs, down to
the level of detail that you specify. The report categorizes information
based on how it is used in the APS generation process. You can report
on:

• The APS entities needed to generate an application-for example,
APS macros and entities used internally to generate APS
applications.

• Unresolved references that the APS Generator creates-for example,
CALL WS-PROG IN WS-PROG. Use this information to help you
debug an application.

• The source code that the APS Generator produces. Use this
information when you need a code listing.

Together these items provide a record of the complete progression of
your application from APS entity definitions to code.

Comments: • Produce the Entity Parts List Report from the Documentation
Facility. In addition to the standard types, you can specify non-APS
libraries defined at your site.

• To specify the application that contains the program, report on the
global application components, such as data structures and user
macros, that are associated with the program in a particular
application.

• To specify the depth of detail that you want to report on, type a
value between 1 and 999 in the Explosion Limit field, or leave the
field blank to report on all available levels.

• To specify the kind of data that you want to report on, complete the
Use Type field as follows:

• A(ps) to report on APS product components, such as APS macros

• I(nfo) to report on unresolved references
Reference

Entity Parts List (EN01) 215

rfpubb.book Page 215 Tuesday, February 19, 2002 9:56 AM
• S(ource) to report on a component that is not part of the APS
product

Example:

 REPORT CODE: EN01 APS APPLICATION DICTIONARY PAGE 1

 ENTITY PARTS LIST 92/07/23 12:18
 CTSAPS.TEST

 ENTITY TYPE: APSAPPL
 ENTITY NAME: *
 APPLICATION:
 EXPLOSION LIMIT:
 USE TYPES: SOURCE

 APSAPPL (DEMOAPPL) 92/07/23 12:17
 APSPROG (DEMOPG1) 92/07/23 11:55
 APSDATA (DEMODS1) 92/07/23 12:08
 APSSCRN (DEMOSC1) 92/07/23 11:57
 DDISYMB (DEMOPSB) 92/05/15 15:20
 COPYLIB (D2MASTER)
 COPYLIB (D2STOCK)
 USERMACS(DEMOUS1) 92/07/23 12:11
 USERMACS(DEMOUS5) 92/07/23 12:14
 APSPROG (DEMOPG2) 92/07/23 11:56
 APSDATA (DEMODS2) 92/07/23 12:08
 APSSCRN (DEMOSC2) 92/07/23 12:05
 DDISYMB (DEMOPSB) 92/05/15 15:20
 COPYLIB (D2MASTER)
 COPYLIB (D2STOCK)
 USERMACS(DEMOUS2) 92/07/23 12:13
 USERMACS(DEMOUS6) 92/07/23 12:15
 APSPROG (DEMOPG3) 92/07/23 11:56
 APSDATA (DEMODS3) 92/07/23 12:08
 APSSCRN (DEMOSC3) 92/07/23 12:06
 DDISYMB (DEMOPSB) 92/05/15 15:20
 COPYLIB (D2MASTER)
 COPYLIB (D2STOCK)
 USERMACS(DEMOUS3) 92/07/23 12:14
 USERMACS(DEMOUS7) 92/07/23 12:15
 APSPROG (DEMOPG4) 92/07/23 11:57
 APSDATA (DEMODS4) 92/07/23 12:09
 APSSCRN (DEMOSC4) 92/07/23 12:07
 DDISYMB (DEMOPSB) 92/05/15 15:20
 COPYLIB (D2MASTER)
Reference

216

rfpubb.book Page 216 Tuesday, February 19, 2002 9:56 AM
 COPYLIB (D2STOCK)
 USERMACS(DEMOUS4) 92/07/23 12:13
 USERMACS(DEMOUS8) 92/07/23 12:16

 1 TARGET WAS LISTED.

Entity Search Utility Report (GS01)

Category: APS-generated report (see Application Reports)

Description: The Entity Search Utility Report lets you use search expressions to report
on subsets of application data that meet the requirements that you
specify. A search expression can be either a literal text string or a regular
expression that lets you search for a certain criteria, such as all
occurrences of certain data name strings in a group of data structures.

When you generate this report, you specify the level of detail that you
want to report on. The available levels depend in part on the type of
data that you select for the report.

Comments: • Produce the Entity Search Utility Report from the Documentation
Facility.

• To report on components with common criteria, such as a common
name prefix, enter a wildcard as explained below.

• To report on a program, optionally specify the application that
contains it. Do so to report on the global application components,
such as data structures and user macros, that are associated with the
program in a particular application.

• To specify the depth of detail that you want to report on, type a
value between 1 and 999 in the Explosion Limit field, or leave the
field blank to report on all levels.

• You can specify whether to include APS members in the report.

• You can specify the search expression that represents the specific
information you want to report on.
Reference

Entity Search Utility Report (GS01) 217

rfpubb.book Page 217 Tuesday, February 19, 2002 9:56 AM
• A search expression can be a text string or a regular expression. You
can create a list of one or more search expressions, and include both
text strings and regular expressions.

• A text string is a literal sequence of characters to search on. For
example, the string ABC finds ABC. The string is case sensitive. If the
string contains spaces, delimit it with single or double quotation
marks.

• A regular expression is a pattern of characters. It may include text
characters and metacharacters. Metacharacters have special
meaning; see below for details.

• Create regular expressions using the following metacharacters.

Metacharacter Description

. Match any value you seek. For example, DATA...
matches such values as DATA-TY or DATASTR.

" " Delimit spaces in an expression. For example, "%
DEFINE." or ’% DEFINE.’ match % DEFINE and %
DEFINED.

() In a pair, specify a group that can be a range (such
as A-Z) or a list (such as ABCD). Within a group, use
only the following metacharacters.

() Specify the first character in a group.

Specify a range within a group.

\ Represent a metacharacter as itself.

* Match zero or more occurrences of the single
character or character group immediately
preceding the *. For example, PROG*1 matches
PRO1, PROG1, and PROGGG1 but not PR1, because
the characters PRO must be part of the match. The
quoted * simply represents itself.

+ Match one or more occurrences of the single
character or character group immediately
preceding the +. The example is the same as the
prior case, but there must be at least one match.
The quoted + simply represents itself.
Reference

218

rfpubb.book Page 218 Tuesday, February 19, 2002 9:56 AM
Example:

REPORT CODE: GS01 APS APPLICATION DICTIONARY PAGE 1
 ENTITY SEARCH UTILITY 92/07/10 02:06
 APS.TEST

 APPLICATION:
 ENTITY: USERMACS
 MEMBER: A1UTTREE
 EXPLOSION LIMIT:
 USE TYPES:

SEARCH EXPRESSIONS:
 r:"% *DEFINE "
 r:"% *END "
 R:"% *IF"
 R:"% *ELSE"

APPL ENTITY TYPE ENTITY NAME LINE
....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+..
 USERMACS A1UTTREE 1 0019 %DEFINE $TREE-DEFINE(
 3 0030 %IF &TREE = ""
 3 0032 %IF &LENGTH(&TREE) > 6
 3 0036 %IF &DEFINED(&A1UTTREE-<&TREE>-DEFINED)
 3 0041 %IF &POINTER-SIZE = "HALF"

? Match zero or one occurrences of the single
character or character group immediately
preceding this metacharacter. The example is the
same as the prior case, but there can be at most
one match. The quoted ? simply represents itself.

^ In the first position, represent a logical not, and
select data that does not specify the specified
criteria. In the first position of an expression, it
matches the rest of any expression. In any other
position, it represents itself.

$ Specify the preceding character or group of
characters if the metacharacter appears in the last
position of the expression and the match appears
at the end of the line. For example, WS-CNT$
matches ADD WS-CNT TO WS-TOT.

\ Indicate that the single metacharacter immediately
following the \ is an ordinary text character rather
than a metacharacter. For example, [A-Z\^]
matches the character range A through Z and the ̂
character.

Metacharacter Description
Reference

Entity Use Report (EN02) 219

rfpubb.book Page 219 Tuesday, February 19, 2002 9:56 AM
 4 0044 %ELSE-IF &POINTER-SIZE = "FULL"
 4 0047 %ELSE
 3 0050 %IF &ALLOC-PARA NOT = ""
 3 0053 %IF &DEBUG = 0
 4 0055 %ELSE
 3 0061 %IF NOT &DEFINED(&A1UTTREE-WORK-AREA)
 3 0068 %IF &WS = "LINKAGE"
 2 0115 %END
 1 0122 %DEFINE $TREE-CLEAR(
 3 0126 %IF &TREE = ""
 2 0137 %END
 1 0147 %DEFINE $TREE-ADD(
 3 0158 %IF &TREE = ""
 3 0163 %IF &NODEX = ""
 4 0165 %ELSE-IF &INDEX(&NODEX, "(")
 3 0168 %IF &PREVX = ""
 4 0170 %ELSE-IF &INDEX(&PREVX, "(")

Entity Use Report (EN02)

Category: APS-generated report (see Application Reports

Description: The Entity Use Report lists components that use the target component,
as in a COPY or INCLUDE statement. For example, you can get a list of
components that use a certain subschema.

When you generate this report, you specify the level of detail that you
want to report on. The available levels depend in part on the type of
data that you select for the report.

Comments: • Produce the Entity Use Report from the Documentation Facility.

• If you are reporting on a program, optionally specify the application
that contains it. Do so to report on the global application
components, such as data structures and user macros, that are
associated with the program in a particular application.

• Specify the depth of detail that you want to report on. To do so,
type a value between 1 and 999 in the Explosion Limit field, or leave
the field blank to report on all available levels.

• Specify the kind of data that you want to report on by completing
the Use Type field as follows.
Reference

220

rfpubb.book Page 220 Tuesday, February 19, 2002 9:56 AM
• A(ps) to report on APS product components, such as APS macros

• I(nfo) to report on unresolved references not used during APS
Generation--for example, CALL WS-PROG-NAME

• S(ource) to report on a component that is not part of the APS
product

• Blank to report on all types of information

Example:

REPORT CODE: EN02 APS APPLICATION DICTIONARY PAGE 1
 ENTITY USE REPORT 02/06/21 14:02
 APS.MVS21DEV
 TARGET: USERMACS(ISPFUSER)
 APPLICATION:
 EXPLOSION LIMIT:
 USE TYPE SELECTIONS:

APSAPPL (APSLINK8)
 APSPROG (A2CNFIG8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2NDMGD8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2NDMGU8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2RECGU8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2RECV8)
 APSPROG (A2RECGU8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2RECV8)
Reference

ENTRY 221

rfpubb.book Page 221 Tuesday, February 19, 2002 9:56 AM
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2SEND8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSLINK8)
 APSPROG (A2SENGD8)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)
APSAPPL (APSPC)
 APSPROG (APSNA)
 USERMACS(ISPFMACS)
 USERMACS(ISPFCOMM)
 USERMACS(ISPFUSER)

ENTRY

Category: S-COBOL structure (see S-COBOL Structures)

Purpose Establish an entry point in a COBOL subprogram.

Syntax: ENTRY literal
 .
 .
 .
[USING identifier1, ..., identifierN]

Comments: • S-COBOL considers the paragraph where the program enters the
subprogram as a main-logic paragraph.

• Code ENTRY immediately after a paragraph name.

• Code ENTRY only in a paragraph that is not performed by any other
paragraph within the subprogram. At the end of this paragraph,
control returns to the calling program, so that you do not need to
code EXIT PROGRAM.

• If the program reaches an EXIT PROGRAM before the end of the
paragraph, control returns to the calling program.
Reference

222

rfpubb.book Page 222 Tuesday, February 19, 2002 9:56 AM
Error Handling

CICS

Description: Test for any Exceptional condition in the CICS environment.

APS generates a CICS IGNORE CONDITION command that ignores all
CICS Exceptional conditions, and generates an 88-level EIBRCODE
structure.

The APS/CICS default for inline error checking is to generate a global
CICS IGNORE condition. You can generate a NOHANDLE on a call-by-call
basis. Flags for both are in the APS CNTL file APCICSIN.

Example: Test for the MAPFAIL condition and perform a user-defined paragraph
to handle it.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 NTRY
 IF MAPFAIL
 PERFORM MAPFAIL-PARA

EIBRCODE Structure:

The variable that controls generation of the EIBRCODE structure is &CIC-
APS-EIBRCODE, which resides in APCICSIN. The following is the APS-
generated EIBRCODE structure, which resides in APCICSTP.

01 APS-EIBFN-EIBRCODE.
 05 APS-EIBFN PIC X(01).
 05 APS-EIBRCODE PIC X(06).

01 FILLER REDEFINES
 APS-EIBFN-EIBRCODE.
 05 APS-EIBFN-EIBRCODE-X PIC S9(04) COMP.
 88 CBIDERR VALUE +1259.
 88 DISABLED VALUE +1549.
 88 DSIDERR VALUE +1537.
 88 DSSTAT VALUE +7684.
 88 DUPKEY VALUE +1668.
 88 DUPREC VALUE +1666.
 88 ENDDATA VALUE +4097.
 88 ENDFILE VALUE +1551.
 88 ENDINPT VALUE +1218.
 88 ENQBUSY VALUE +4658.
Reference

Error Handling 223

rfpubb.book Page 223 Tuesday, February 19, 2002 9:56 AM
 88 ENVDEFERR VALUE +4329.
 88 EODS VALUE +1040.
 88 EOF VALUE +1028
 +1217.
 88 EXPIRED VALUE +4128.
 88 FUNCERR VALUE +7688.
 88 IGREQCD VALUE +1258.
 88 ILLOGIC VALUE +1538.
 88 INVERRTERM VALUE +6176.
 88 INVMPSZ VALUE +6152.
 88 INVREQ VALUE +736
 +1248
 +1544
 +2592
 +3808
 +4351
 +4832
 +5122
 +6145
 +6880.
 88 INVTSREQ VALUE +4116.
 88 IOERR VALUE +1664
 +2052
 +2564
 +4100
 +5127.
 88 ISCINVREQ VALUE +1745
 +2257
 +2769
 +4305.
 88 ITEMERR VALUE +2561.
 88 JIDERR VALUE +5121.
 88 LENGERR VALUE +1249
 +1761
 +2273
 +2785
 +3297
 +4321
 +5126
 +6369
 +7905.
 88 MAPFAIL VALUE +6148.
 88 NOJBUFSP VALUE +5129.
 88 NOPASSBKRD VALUE +1255.
 88 NOPASSBKWR VALUE +1256.
 88 NOSPACE VALUE +1667
 +2064
 +2568.
Reference

224

rfpubb.book Page 224 Tuesday, February 19, 2002 9:56 AM
 88 NOSTG VALUE +3298.
 88 NOTALLOC VALUE +1237.
 88 NOTFND VALUE +1665
 +4225.
 88 NOTOPEN VALUE +1548
 +2056
 +5125.
 88 PGMIDERR VALUE +3585.
 88 QBUSY VALUE +2240.
 88 QIDERR VALUE +2050
 +2562.
 88 QZERO VALUE +2049.
 88 RDATT VALUE +1252
 +6372.
 88 RETPAGE VALUE +6146.
 88 RTEFAIL VALUE +6272.
 88 RTESOME VALUE +6208.
 88 SEGIDERR VALUE +1540.
 88 SELNERR VALUE +7692.
 88 SESSBUSY VALUE +1236.
 88 SESSIONERR VALUE +1234.
 88 SIGNAL VALUE +1253.
 88 SYSBUSY VALUE +1235.
 88 SYSIDERR VALUE +1232
 +1744
 +2256
 +2768
 +4304.
 88 TERMIDERR VALUE +1254
 +4114.
 88 TRANSIDERR VALUE +4113.
 88 UNEXPIN VALUE +7696.
 88 WRBRK VALUE +1251
 +6371.
 88 ERROR-FOUND VALUE +1259
 +1537 +7684 +1668 +1666 +4097 +1551
 +1218 +4658 +4329 +1040 +1028 +1217
 +4128 +7688 +1258 +1538 +6176 +6152
 +736 +1248 +1544 +2592 +3808 +4351
 +4832 +5122 +6145 +6880 +4116 +1664
 +2052 +2564 +4100 +5127 +1745 +2257
 +2769 +4305 +2561 +5121 +1249 +1761
 +2273 +2785 +3297 +4321 +5126 +6369
 +7905 +6148 +5129 +1255 +1256 +1667
 +2064 +2568 +3298 +1237 +1665 +4225
 +1548 +2056 +5125 +3585 +2240 +2050
 +2562 +2049 +1252 +6372 +6146 +6272
 +6208 +1540 +7692 +1236 +1234 +1253
Reference

Error Handling 225

rfpubb.book Page 225 Tuesday, February 19, 2002 9:56 AM
 +1235 +1232 +1744 +2256 +2768 +4304
 +1254 +4114 +4113 +7696 +1251 +6371.
 05 FILLER PIC X(05).

IDMS DB

Description: Test for any error condition in the IDMS DB environment. Check the call
status in your program with flags provided by the APS/IDMS DB
Generator. All flags are COBOL 88-level condition names.

After any APS/IDMS call, the value of ERROR-STATUS moves to DBIO-
STATUS. The program checks the associated 88-level flags for status
checking. If a DB call contains a record name, such as DB-STORE REC
CUSTOMER, you can move the value of ERROR-STATUS to record-
STATUS, as well as DBIO-STATUS, and the program checks both fields.

Generated record-STATUS flags have the following format.

ORDER-STATUS PIC X(04) VALUE ’0000’.
 88 STABLE-ON-ORDER VALUE ’0000’.
 88 AT-END-ON-ORDER VALUE ’0307’.
 88 INVALID-KEY-ON-ORDER VALUE ’0326’ ’0626’.
 88 INVALID-DUP-ON-ORDER VALUE ’1205’ ’0805 ’0705’.
 88 ABNORMAL-ON-OR VALUE ’0001’ THRU ’0306’
 ’0308’ THRU ’0325’
 ’0327’ THRU ’0625’

Flag Status Code Error Condition

AB-ON-REC 0001 thru 0306
0308 thru 0325
0327 thru 0625
1206 thru 9999

Any error other than those listed

DUP-ON-REC 0705 0805 1205 Duplicate key

END-ON-REC 0307 End of set, area, or index

NTF-ON-REC 0326 0626 Record not found

OK-ON-REC 0000 Successful operation

POS-ON-REC All values of AB-ON-
REC whose last 2
bytes are 06, 13

Positioning error

VIO-ON-REC All values of AB-ON-
REC whose last 2
bytes are 01, 02, 08,
09, 10, 14, 15, 23, 31

Update violates IDMS DB rules
Reference

226

rfpubb.book Page 226 Tuesday, February 19, 2002 9:56 AM
 ’0627’ THRU ’0704’
 ’0706’ THRU ’0804’
 ’0806’ THRU ’1204’
 ’1206’ THRU ’9999’.
DB-OBTAIN REC IDMSREC AREA CUSTOMER-REGION FIRST
IF OK-ON-REC
 DB-OBTAIN REF CUSTOMER REC ORDER FIRST
 IF OK-ON-ORDER
 PERFORM ORDER-PROCESSING-PARA
 ELSE-IF AT-END-ON-ORDER
 ... OR INVALID-KEY-ON-ORDER
 PERFORM NO-ORDERS-PARA
 ELSE
 PERFORM ABNORMAL-ON-ORDER-PARA

DB-OBTAIN and DB-GET generate record-STATUS flag values (when the
record name is given). All other calls generate DBIO-STATUS values.

Example: 01 DBIO-STATUS PIC X(04) VALUE ’0000’.
 88 OK-ON-REC VALUE ’0000’.
 88 END-ON-REC VALUE ’0307’.
 88 NTF-ON-REC VALUE ’0326’ ’0626’.
 88 DUP-ON-REC VALUE ’1205’ ’0805’
 ’0705’.
 88 AB-ON-REC VALUE ’0001’ THRU ’0306’
 ’0308’ THRU ’0325’
 ’0327’ THRU ’0625’
 ’0627’ THRU ’0704’
 ’0706’ THRU ’0804’
 ’0806’ THRU ’1204’
 ’1206’ THRU ’9999’.
01 APS17-STATUS REDEFINES DBIO-STATUS.
 02 APS17-MAJOR-CODE PIC X(02).
 02 APS17-MINOR-CODE PIC X(02).
 88 POS-ON-REC VALUE ’06’ ’13’.
 88 VIO-ON-REC VALUE ’01’ ’02’
 ’08’ ’09’
 ’10’ ’14’
 ’15’ ’23’
 ’31’.
Reference

Error Handling 227

rfpubb.book Page 227 Tuesday, February 19, 2002 9:56 AM
IMS DB

Description: Test for any error condition in the IMS DB environment. Check the call
status in your program with flags provided by the APS/IMS DB
Generator. All flags are COBOL 88-level condition names.

Abnormal Error Processing:

By default, the APS-supplied IMS database error macros--$IM-ERR-
CONDITION and $IM-ERR-ACTION--use APS-supplied status flags.

The macros also call DFS0AER, the IMS-supplied error display routine. To
enable the call to DFS0AER, go to the APS CNTL file APSDBDC and set
the variable % &IM-USE-DFS0AER to 1. If you don’t have DFS0AER at
your installation, or you want to disable it, just leave the variable set
to 0.

APS supplies two error macros in the APSMACS file IMSPHYS.

Flag Status Code Error Condition

AB-ON-REC Any not listed
below

For any error code not listed below

DUP-ON-REC I, NI LB Call failed because the new segment
would create a duplicate for a key or
sequence field defined as unique

END-ON-REC GB End of database reached

NTF-ON-REC GE GB Requested record not found

OK-ON-REC 2 spaces, GA GD
GK

Everything is OK

POS-ON-REC DJ LC LD LE Positioning error; requested
positioning not established

RTY-ON-REC GG Record not available; retry

VIO-ON-REC AM DA DX RX IX Update violates IMS DB rules

$IM-ERR-CONDITION Specifies the conditions for which the
database return status indicates an error. The
conditional statement IF AB-ON-REC tests for
the APS data base status flags (found in the
generated Working-Storage field IM-FLGS),
and the IMS status codes (in the field IM-
STATUS).
Reference

228

rfpubb.book Page 228 Tuesday, February 19, 2002 9:56 AM
To modify $IM-ERR-CONDITION, write an overriding macro of the same
name in the USERMACS macro library. Use the override macro for

• A specific application, enter the macro name in the Application
Painter field USERMACS, and specify in the Loc(ation) field a
location after the Identification Division but before the Procedure
Division.

• An entire Project and Group, code in your project.group.APSPROJ
file the APS customization exit name $DB-SUBSCHEMA-EXIT-2, and
an % INCLUDE statement that includes the override macro. For
example:

% DEFINE $DB-SUBSCHEMA-EXIT-2
 % INCLUDE USERMACS(MY-OVERRIDE-MAC)
% END

Notes:

• The override macro for $IM-ERR-CONDITION must generate one
simple or compound S-COBOL conditional statement that tests APS
data base status flags (found in the generated Working-Storage
field IM-FLGS), the IMS status code (in the field IM-STATUS), or both.

• To modify $IM-ERR-ACTION, write an overriding macro of the same
name. You can use the override macro for a specific application or
an entire Project and Group, as detailed above.

• The override macro for $IM-ERR-ACTION must generate S-COBOL
procedural code for the action specified when a condition(s) tested
by $IM-ERR-CONDITION is True. You can use the following

$IM-ERR-ACTION Contains the procedures executed when the
condition specified in $IM-ERR-CONDITION is
True. When AB-ON-REC codes are returned,
this macro calls DFS0AER, the IMS-supplied
error display routine. Reminder: To enable
calling DFS0AER, go to APSDBDC and make
sure % &IM-USE-DFS0AER is set to 1.
Reference

Error Handling 229

rfpubb.book Page 229 Tuesday, February 19, 2002 9:56 AM
parameters, whose values are passed to $IM-ERR-ACTION after a
bad database call.

Examples: • Receive the status flag NTF-ON-REC on a DB-OBTAIN with a single
segment level to indicate the requested employee number does not
exist.

DB-OBTAIN RECORD EMPLOYEE-MASTER
... WHERE EMP-NO = NEEDED-EMP-NO

• In contrast, receiving NTF-ON-REC on a DB-OBTAIN requesting the
return of segments at three levels, cannot specify the segment at
which the call failed. Resolve this by checking the IMS error fields.

DB-OBTAIN RECORD EMPLOYEE-MASTER
... WHERE EMP-NO = NEEDED-EMP-NO REC WEEKLY-TIME-SEG
... WHERE WEEK-END-DATA = PERIOD-DATE REC PROJECT-TIME-REC
... WHERE PROJ-CODE = CURRENT-PROJ

IMS Error Fields

IMS provides error fields that show how far your call was processed
prior to failure.

Parameter Description

&ERR-PCB Name of PCB used for call.

&ERR-MACNAME Name of call resulting in error.

&ERR-FUNC IMS function code used in call.

&ERR-SEGNAME Name of segment requested in call.

&ERR-PAR-SEGNAME Segment name of parent requested in call.

&ERR-IOAREA COBOL name of record I/O area.

&ERR-PAR-IOAREA COBOL name of parent record I/O area.

&ERR-USER-MSG COBOL name of 72 byte error message field.

&ERR-SSA1 thru 15 SSA(s) used in call.

&IM-LVL-MAX Maximum level of the call.

IM-DB-PCB-SEGLEV Lowest level of the segment found in the
database, for example, 15, if a 15th-level
segment is found. Default 00.

IM-DB-PCB-SEGNAME 8-character IMS name for the lowest-
level segment located.
Reference

230

rfpubb.book Page 230 Tuesday, February 19, 2002 9:56 AM
IMS DC

Description: Test for any error condition in the IMS DC environment. Check the call
status in your program with flags provided by the APS/IMS DC
Generator. All flags are COBOL 88-level condition names.

IM-DB-PCB-KEY-FEED-BACK Concatenated key information for the
path from the root-level to the lowest-
level segment found.

IM-DB-PCB-KEY-KFBLEN Length of data in the IM-DB-PCB-KEY-
FEED-BACK field.

Flag Status Code Error Condition

AB-ON-DC-CALL CH X1 X8 Category 5 status code return; call
not complete.

FP-ERR FF FH FS FV Category 3 status code return.
Fast Path error; call complete.

NO-MORE-MSGS QC Category 3 status code return on
the TP call; no more input
messages exist.

NO-MORE-SEGS QD Category 3 status code return; no
more segments exist for this
message.

SEG-NOT-FOUND GE Category 1 status code return;
segment not found.

OK-ON-DC-CALL 2 spaces, CC CE
CF CG CI CJ CK
CL FD FW FF FH
FS FV GE QC QD

Categories 1 and 2 status code
return; processing proceeds.

SEC-VIO A4 FI Category 4 status code returned;
security violation occurred; call
not complete.

SPA-IO-ERR XA XB XE XF
XG X1 X2 X3 X4
X5 X6 X7 X8 X9

Categories 4 and 5 status code
return; SPA error; call not
complete.
Reference

Error Handling 231

rfpubb.book Page 231 Tuesday, February 19, 2002 9:56 AM
Abnormal Error Processing

By default, the APS-supplied IMS data communication error macros--
$TP-ERR-CONDITION and $TP-ERR-ACTION--use APS-supplied status
flags.

The macros also call DFS0AER, the IMS-supplied error display routine. To
enable the call to DFS0AER, to to the APS CNTL file APSDBDC and set
the variable % &IM-USE-DFS0AER to 1. If you don’t have DFS0AER at
your installation, or you want to disable it, just leave the variable set
to 0.

APS supplies these two error macros in the APSMACS file IMSPHYS.

To modify $TP-ERR-CONDITION, write an overriding macro of the same
name in the USERMACS macro library. You can use the override macro
for a specific application or an entire Project and Group.

TP-PGM-ERR AA AB AD AL
AP AT AY AZ
A1 A2 A3 A4
A5 A6 A7 A8
A9 CA CB CD
QE QH

Category 4 status code return;
programming error; call not
complete.

Flag Status Code Error Condition

$TP-ERR-CONDITION Specifies the conditions for which the data
communication return status indicates an error.
The conditional statement IF AB-ON-DC-CALL
tests for the APS data communication flags
(found in the generated Working-Storage field
TP-FLGS), and the IMS status codes (in the field
TP-STATUS).

$IM-ERR-ACTION Contains the procedures executed when the
condition specified in $TP-ERR-CONDITION is
True. When AB-ON-DC-CALL codes are returned,
this macro calls DFS0AER, the IMS-supplied error
display routine.

Note: To enable calling DFS0AER, go to
APSDBDC and make sure % &IM-USE-DFS0AER is
set to 1.

Reference

232

rfpubb.book Page 232 Tuesday, February 19, 2002 9:56 AM
The override the macro for $TP-ERR-CONDITION, generate a simple or
compound S-COBOL conditional statement that tests APS data
communication status flags (found in the generated Working-Storage
field TP-FLGS), the IMS status code (in the field TP-STATUS), or both.

To modify $TP-ERR-ACTION, write an overriding macro of the same
name. You can use the override macro for a specific application or an
entire Project and Group. The override macro must generate S-COBOL
procedural code for the action specified when a condition(s) tested by
$TP-ERR-CONDITION is True. You can use the following parameters that
are passed to $TP-ERR-ACTION after a bad data communication call.

SQL

Description: Test for any error condition in the SQL environment. Check the call
status in your program with flags provided by the APS/SQL Generator;
test SQLCODE. All flags are COBOL 88-level condition names.

Parameter Description

&TP-ERR-PCB Name of the I/O PCB used for the call

&TP-ERR-FUNC Generated Working Storage field, IM-CALL-
FUNC, to which the DC call function is moved
prior to the call

&TP-ERR-MSG Generated 72-byte Working Storage field, IM-
ERR-MSG, containing an error message

&TP-ERR-SEG-IOAREA Generated Working Storage field, either TP-
SEGMENT or user record area

&TP-ERR-SPA Generated Working Storage field, TP-SPA,
present only in IMS conversational programs

Flag Error Condition

AB-ON-REC Any error not listed in this table.

DB2-DEADLOCK DB-PROCESS calls check this status to ensure the
cursor is not already closed before closing it; SQL
closes the cursor if database is locked.

DUP-ON-REC DB-STORE failed because the row already exists;
duplicates not allowed.

END-ON-REC End of table or cursor set reached.

NTF-ON-REC Requested row not found.

OK-ON-REC Operation successful.
Reference

Error Handling 233

rfpubb.book Page 233 Tuesday, February 19, 2002 9:56 AM
Abnormal Error Processing

APS/SQL provides flags for you to code in your program to check the
status of SQL calls. When the AB-ON-REC flag is returned, it invokes an
abnormal condition processing macro ($D2-ERROR-PARA) that displays a
message and, for IMS and CICS programs, terminates the program.

If your DC target is IMS, and you are not running IMS under BTS, set
&D2-EXEC-UNDER-BTS=NO in the APS CNTL file APDB2IN. This
eliminates "Display" statements in the APS-generated error handling
routine.

To disable &D2-ERROR-PARA, go to the APS CNTL file APDB2IN and set
&D2-AUTO-ERROR-HANDLING to OFF.

You can modify error processing in two ways.

• Modify the APS error processing paragraph &D2-AUTO-ERROR-
HANDLING, which resides in the APS CNTL file APDB2IN macro
$DB2-ERROR-SETUP

• Modify which status codes should be considered error conditions, in
the APS CNTL file APDB2IN macro $DB2-CHECK-RETURNS-AUX. In
addition, you can change the status of a referential integrity
constraint from an abnormal condition, to an invalid key. Go to the
APS CNTL file APDB2IN and set the flag &D2-RI-IS-INVALID-KEY
to Yes.

Trace Flag

Description: Use the S-COBOL trace flag for debugging. This facility displays where
APS performs each paragraph.

The Trace facility differs from the IBM READY-TRACE because it displays
the paragraph name only when a PERFORM executes a paragraph, and
not each time a loop executes.

Note: To activate the Trace facility, specify SCBTRACE on the Precompiler
Options screen.

RI-ON-REC Referential Integrity check successful (corresponds
to SQLCODE -532 to -530).

Flag Error Condition
Reference

234

rfpubb.book Page 234 Tuesday, February 19, 2002 9:56 AM
Syntax: WORKING-STORAGE SECTION.
 .
 .
 .
 02 SAGE-TRACE-FLAG PIC X VALUE "T".
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
paragraphname
 IF SAGE-TRACE-FLAG = TRUE
 DISPLAY "EXEC:--paragraphname--".
 .
 .
 .

Comments: • You can incorporate logic to set SAGE-TRACE-FLAG to FALSE until
some selected point in the program, and then set it to TRUE.

• To turn the TRACE feature off at run-time, code:

MOVE FALSE TO SAGE-TRACE-FLAG

VSAM Batch

Description: Test for any error condition in the VSAM batch environment. Check the
call status in your program with flags provided by the APS/VSAM Batch
Generator. All flags are COBOL 88-level condition names.

Example: DB-STORE REC CUST-RECORD
IF OK-ON-REC
 SCREEN-MSG = ’CUSTOMER ADDED TO FILE’

Flag Status Code Error Condition

OK-ON-REC 00 Successful operation

DUP-ON-REC 02 Duplicate key; duplicates allowed

END-ON-REC 10 End of file

INV-ON-REC 20 21 22 23 24 Invalid key condition

IVD-ON-REC 22 Duplicate key; duplicates not allowed

NTF-ON-REC 23 Record not found

AB-ON-REC 30 34 90 91 92
93 94 95 96 97

Abnormal condition
Reference

Error Handling 235

rfpubb.book Page 235 Tuesday, February 19, 2002 9:56 AM
ELSE-IF IVD-ON-REC
 SCREEN-MSG = ’DUPLICATE CUSTOMER - NOT ADDED’

Abnormal Error Processing

When the AB-ON-REC flag is returned, it invokes an abnormal condition
processing macro ($DB-ERR-CALL) to identify and process run-time I/O
errors, terminate the program, and display a message giving the
following information.

• DB call in error

• Native VSAM Batch call name

• File name

• Program name

• Status code

• Program termination method; default is a COBOL STOP RUN

Note: APS identifies the status code values listed in the previous table;
the developer should test for all other conditions, such as, 00, 02, 10, 20,
21, 22, 23, and 24.

Program generation options

• Exclude specific status code values from AB-ON-REC.

• Deactivate the APS/VSAM Batch abnormal condition processing
routine.

There are three ways to modify AB-ON-REC processing.

• Exclude certain CICS Exceptional Conditions and ISI-Errors, or batch
conditions, from being AB-ON-REC conditions. To do so, go to the
APS CNTL file APVSAMIN and override their variables.

• Disable $DB-ERR-CALL. In the APVSAMIN file, set &VS-AUTO-ERROR-
HANDLING to No.

• Override $DB-ERR-CALL.

To override $DB-ERR-CALL, define (or % INCLUDE in your program,
using the SYM1 keyword) your own $DB-ERR-CALL macro.
Reference

236

rfpubb.book Page 236 Tuesday, February 19, 2002 9:56 AM
Example: % DEFINE $DB-ERR-CALL
 PERFORM LOG-VSAM-ERROR
 % END
 % SET EPILOGUE $LOG-VSAM-ERROR
 % DEFINE $LOG-VSAM-ERROR
 % SET WORKING-STORAGE
 COPY LOGDATA.
 % SET PROCEDURE
 LOG-VSAM-ERROR.
 /* CAPTURE EIB DATA
 MOVE EIBFN TO CA-EIBFN
 MOVE EIBRCODE TO CA-EIBRCODE
 MOVE EIBDS TO CA-EIBDS
 MOVE EIBDATE TO CA-EIBDATE
 MOVE EIBTIME TO CA-EIBTIME
 MOVE EIBTASKN TO CA-EIBTASKN
 MOVE EIBTRMID TO CA-EIBTRMID
 MOVE EIBTRNID TO CA-EIBTRNID
 /* TRANSFER CONTROL TO LOG PROGRAM
 CICS XCTL
 ... PROGRAM(’LOGERROR’)
 ... COMMAREA(CA-EIB-AREA)
 ... LENGTH(CA-EIB-AREA-LENGTH)
 % END

VSAM Online

Description: Test for any error condition in the VSAM online environment. Check the
call status in your program with flags provided by the APS/VSAM
Generator. All flags are COBOL 88-level condition names. Two
equivalent sets of flags, APS/CICS VSAM and APS/CICS EIBRCODE, are
provided.

VSAM Flag EIBRCODE Flag ISI-Errors/ Exceptional
Condition

Error Condition

AB-ON-REC DSIDERR ILLOGIC IOERR
LENGERR NOSPACE
NOTOPEN SYSIDERR

DSIDERR ILLOGIC IOERR
LENGERR NOSPACE
NOTOPEN SYSIDERR

Abnormal condition

DUP-ON-REC DUPKEY DUPKEY Duplicate key;
duplicates allowed

END-ON-REC ENDFILE ENDFILE End of file

INV-ON-REC NOTFND DUPREC NOTFND DUPREC Invalid key condition

IRQ-ON-REC INVREQ INVREQ Invalid request
Reference

Error Handling 237

rfpubb.book Page 237 Tuesday, February 19, 2002 9:56 AM
Examples: With APS/CICS VSAM flags:

DB-STORE REC CUST-RECORD
IF OK-ON-REC
 SCREEN-MSG = ’CUSTOMER ADDED TO FILE’
ELSE-IF IVD-ON-REC
 SCREEN-MSG = ’DUPLICATE CUSTOMER - NOT ADDED’

With APS/CICS EIBRCODE flags:

DB-STORE REC CUST-RECORD
IF EIBRCODE = LOW-VALUES
 SCREEN-MSG = ’CUSTOMER ADDED’
ELSE-IF DUPREC
 SCREEN-MSG = ’DUPLICATE CUSTOMER - NOT ADDED’

Abnormal Error Processing

When the AB-ON-REC flag is returned, it invokes an abnormal condition
processing macro ($D2-ERR-CALL) to identify and process run-time I/O
errors, terminate the program, and display a message giving the
following information.

• DB call in error

• Native VSAM Batch call name

• File name

• Program name

• Status code

• Program termination method, which is a generated TERM

• For a LENGERR condition, the actual record length provided by CICS
(derived from APS-shortrecname-VAR after CICS updates this field)

IVD-ON-REC DUPREC DUPREC Duplicate key;
duplicates not allowed

NTF-ON-REC NOTFND NOTFND Record not found

OK-ON-REC N/A N/A Successful operation

VSAM Flag EIBRCODE Flag ISI-Errors/ Exceptional
Condition

Error Condition
Reference

238

rfpubb.book Page 238 Tuesday, February 19, 2002 9:56 AM
Note: APS identifies the status code values listed in the previous table;
all other conditions, such as, DUPKEY, DUPREC, ENDFILE, INVREQ, and
NOTFND, are processed by the programmer.

Program generation options:

• Exclude specific CICS exceptional conditions and ISI-ERRORS from
AB-ON-REC.

• Deactivate the APS abnormal condition processing routine.

There are three ways to modify AB-ON-REC processing.

• Exclude certain CICS Exceptional Conditions and ISI-Errors, or batch
conditions, from being AB-ON-REC conditions. To do so, go to the
APS CNTL file APVSAMIN and override their variables.

• Disable $DB-ERR-CALL. In the APVSAMIN file, set &VS-AUTO-ERROR-
HANDLING to No.

• Override $DB-ERR-CALL.

To override $DB-ERR-CALL, define (or % INCLUDE in your program,
using the SYM1 keyword) your own $DB-ERR-CALL macro.

Example: % DEFINE $DB-ERR-CALL
 PERFORM LOG-VSAM-ERROR
 % END
 % SET EPILOGUE $LOG-VSAM-ERROR
 % DEFINE $LOG-VSAM-ERROR
 % SET WORKING-STORAGE
 COPY LOGDATA.
 % SET PROCEDURE
 LOG-VSAM-ERROR.
 /* CAPTURE EIB DATA
 MOVE EIBFN TO CA-EIBFN
 MOVE EIBRCODE TO CA-EIBRCODE
 MOVE EIBDS TO CA-EIBDS
 MOVE EIBDATE TO CA-EIBDATE
 MOVE EIBTIME TO CA-EIBTIME
 MOVE EIBTASKN TO CA-EIBTASKN
 MOVE EIBTRMID TO CA-EIBTRMID
 MOVE EIBTRNID TO CA-EIBTRNID
 /* TRANSFER CONTROL TO LOG PROGRAM
 CICS XCTL
 ... PROGRAM(’LOGERROR’)
Reference

Error Processing Messages 239

rfpubb.book Page 239 Tuesday, February 19, 2002 9:56 AM
 ... COMMAREA(CA-EIB-AREA)
 ... LENGTH(CA-EIB-AREA-LENGTH)
 % END

Error Processing Messages

Category: Screen Painter feature (see Field Edits)

Description: Code default error messages to display when the end user enters invalid
data or neglects to enter data that is required. You can code these
messages for each screen field, or globally for all screen fields.

Note: A field-specific message overrides a global message.

Procedure: Field-Specific

To assign an error message for a specific field, follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 Access the Error Processing screen by selecting the Error Processing
prompt on any Field Edit screen.

3 Code messages of up to 75 characters. This message overrides any
global default messages you entered on the Parm screen for screen
fields.

4 Specify the attribute values for fields that fail input edits using the
following syntax:

attribute+attribute+...

The default attributes are bright intensity and cursor positioning on
the field.

5 You can copy the default messages and attributes from the Parm
screen, and apply them to the current field. To do so, enter def or
defaults in the Command field. You can the modify the message as
desired.
Reference

240

rfpubb.book Page 240 Tuesday, February 19, 2002 9:56 AM
Global

To assign an error message that applies to all screen fields, or to bypass
input edits for the screen, follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 From the Field Selection screen, enter pm or parm in the Command
field. The Parm Screen screen displays.

3 Enter the name of the field on your screen that will display the
global error message.

4 Enter the text to display when the data does not pass field edits and
enter the text to display when required data is not entered in the
appropriate fields.

5 Specify the attribute values for fields that fail input edits using the
following syntax:

attribute+attribute+...

The default attributes are bright intensity and cursor positioning on
the field.

6 To define conditions for bypassing input edits for the screen, select
Bypass Edits on the Parm Screen screen. A subsequent Parm Screen
screen for bypassing edits displays. You can define bypass conditions
for one field per screen; if any of these conditions occur, APS
bypasses field edits for the entire screen. If the field is in a repeated
block, APS bypasses edits for all fields in that row occurrence only.

7 Complete the fields on this screen as follows.

Field Description and Values

Field Name Specify any field on the screen, including a field in
a repeated block, to bypass.

Value(s) Specify the value or values that let end users
bypass input edits. Valid COBOL reserved words
are spaces, low-values, and high-values.

Additional
Value(s)

Enter as many additional bypass values that can
fit on the line; separate each value with a comma.

Program
Function Keys

Select the PF keys the end user can press to bypass
the input edits.
Reference

ESCAPE 241

rfpubb.book Page 241 Tuesday, February 19, 2002 9:56 AM
ESCAPE

Category: S-COBOL structure (see S-COBOL Structures)

Description: Exit from the current paragraph.

Syntax: ESCAPE

Comments: Processing resumes with the first statement after the statement
performing the paragraph, except if ESCAPE occurs in the first or main
logic paragraph of

• The main program--control returns to the operating system by
generating an EXIT PROGRAM statement.

• A called program--control passes to the first statement after the
CALL statement in the calling program. The called program
generates an EXIT PROGRAM statement.

Example: If the condition in line 2220 is true, pass control back to line 2050.

 .
 .
 .
002030 CHECK-DATA
002040 PERFORM STEP-1
002050 ADD 1 TO COUNTER
 .
 .
 .
002210 STEP-1
002220 IF X = 1
002230 ESCAPE
002240 ADD 1 TO FIELD-A
Reference

242

rfpubb.book Page 242 Tuesday, February 19, 2002 9:56 AM
EVALUATE

Category: S-COBOL structure (see S-COBOL Structures)

Purpose Perform logic by cases, such as a decision table.

Syntax: Format 1, standard evaluation procedure:

EVALUATE identifier
WHEN valuexpression1
 statementblock
[.
 .
 .
WHEN valuexpressionN
 statementblockN]
[WHEN OTHER
 statementblock]

Format 2, decision table:

EVALUATE identifier1[, ..., identifierN]
WHEN valuexpression1[, ..., valuexpressionN]
 statementblock
[.
 .
WHEN valuexpressionN+1[, ..., valuexpressionN+N]
 statementblock]
[WHEN OTHER
 statementblock]

Parameters: identifier Any COBOL identifier

valuexpression In Format 1, a data name or a group of COBOL
literals, identifiers, and arithmetic expressions
forming expression1, expression2,

In Format 2, one of the following

ANY, or

expression1 [THRU expression2]
... OR expression3[THRU expression4]
... [OR expression5 [THRU expression6]]

Symbols such as =, <, and > are not valid.
Reference

EVALUATE 243

rfpubb.book Page 243 Tuesday, February 19, 2002 9:56 AM
Comments: • For run time efficiency, APS generates the GO TO ... DEPENDING ON
translation with Format 1, if the code meets the following criteria.

• Each WHEN valuexpression is a numeric literal.

• The literals increase in value from left to right, top to bottom.

• The largest (last) literal in the statement is less than four times
as big as the number of WHEN clauses, not counting WHEN
OTHER.

If the above criteria are met and the evaluated field is not defined
as numeric, a COBOL error occurs.

• Only the first WHEN condition met is executed.

• If a WHEN condition is true and it does not include an optional
statement block, program control passes to the next statement with
the same or less indentation as the word EVALUATE.

• To prevent logic from falling through if no WHEN conditions are
met, code WHEN OTHER.

• EVALUATE does not evaluate 88-levels, as the COBOL/2 EVALUATE
statement does.

• If a COBOL/2 EVALUATE statement is also valid S-COBOL EVALUATE
syntax, APS processes it as S-COBOL statement.

• You can evalulate a maximum of 255 conditions/fields. You can code
a maximum of 102 WHEN conditions.

• You can use EVALUATE to code the NEXT SENTENCE concept of
passing program control out of a particular construct to the next
executable statement.

Example: Create a mailing list that includes new subscribers (less than 1 year) and
preferred subscribers (more than 5 years) broken down by region.

EVALUATE MONTHS, REGION
WHEN 1 THRU 11, ’EAST’
 WRITE NEW-EAST-REC
WHEN 1 THRU 11, ’WEST’
 WRITE NEW-WEST-REC
WHEN 61 THRU 9999, ’EAST’
 WRITE PREFERRED-EAST-REC
WHEN 61 THRU 9999, ’WEST’
 WRITE PREFERRED-WEST-REC
Reference

244

rfpubb.book Page 244 Tuesday, February 19, 2002 9:56 AM
Exit Points

Category: Database calls (see Database Calls)

Compatibility: SQL, VSAM Batch, and VSAM Online targets

Description: At various program locations, you can write your own rules to
customize methods. In your program, you write a rule using one of the
APS-supplied predefined rule names, and APS invokes it at its proper
location. You can write rules that are automatically invoked at the
beginning and end of the processing using either of these predefined
rule name formats.

SQL

For DB-ERASE:

$D2-DB-ERASE-BEGIN-EXIT
$D2-DB-ERASE-END-EXIT

For DB-MODIFY:

$D2-DB-MODIFY-BEGIN-EXIT
$D2-DB-MODIFY-END-EXIT

For DB-OBTAIN:

$D2-DB-OBTAIN-BEGIN-EXIT
$D2-DB-OBTAIN-END-EXIT

For DB-PROCESS:

$D2-DB-PROCESS-BEGIN-EXIT
$D2-DB-PROCESS-END-EXIT

For DB-STORE:

$D2-DB-STORE-BEGIN-EXIT
$D2-DB-STORE-END-EXIT

VSAM Batch and VSAM Online

For DB-ERASE:

$VS-DB-ERASE-BEGIN-EXIT
$VS-DB-ERASE-END-EXIT
Reference

EXIT PROGRAM 245

rfpubb.book Page 245 Tuesday, February 19, 2002 9:56 AM
For DB-MODIFY:

$VS-DB-MODIFY-BEGIN-EXIT
$VS-DB-Modify-END-EXIT

For DB-OBTAIN:

$VS-DB-OBTAIN-BEGIN-EXIT
$VS-DB-OBTAIN-END-EXIT

For DB-PROCESS:

$VS-DB-PROCESS-BEGIN-EXIT
$VS-DB-PROCESS-END-EXIT

For DB-STORE:

$VS-DB-STORE-BEGIN-EXIT
$VS-DB-STORE-END-EXIT

EXIT PROGRAM

Category: S-COBOL structure (see S-COBOL Structures)

Purpose End the execution sequence of a program or subprogram and return
control to the invoking source.

Syntax: EXIT PROGRAM

Comments: • EXIT PROGRAM can appear anywhere in an S-COBOL paragraph.

• In a called program, EXIT PROGRAM passes control to the first
statement after the CALL statement in the calling program.

• An EXIT PROGRAM terminates all APS programs, unless you include
a STOP RUN or GOBACK (IBM COBOL extension).

• APS generates an EXIT PROGRAM at the end of the first paragraph
of any called program so that you do not need to code it.
Reference

246

rfpubb.book Page 246 Tuesday, February 19, 2002 9:56 AM
Expressions, SQL

Compatibility: SQL target

Description: APS/SQL supports expressions for the DB-DECLARE, DB-OBTAIN, and DB-
PROCESS calls.

Comment: If an INTO variable is not specified, the result returns to the host
variable for the first column.

Examples: DB-OBTAIN REC TABLE1
... RATE + (DED / 2.0)
... PERF / 2
... INTEGER(DOB) - INTEGER(PERF - 1) (WS-RET-INT)
... WHERE PERF > 100

DB-OBTAIN REC RECORD1-RED
... RATE + YEAR_TO_DATE (WS-CALC-RATE)
... MONTH(HIREDATE) - DAY(HIREDATE) (WS-DATE-RETURN
... AVG(RATE - 1) / 4 (WS-AVG-RATE)
... YEAR((CURRENT DATE - HIREDTE),WS-CALC-DATE,Y)
... CHAR((HIREDTE - 28 DAYS,USA),WS-DATE-AREA,Y)
... WHERE RATE > 7

Sample Expressions Return INTO Host Null Indicator

INTEGER (DOB) - INTEGER(PERF - 1) (WS-RET-INT) WS-RET-INT IND-DOB

CURRENT DATE - 1 DAY (WS-CURRDATE) WS-CURRDATE --------

RATE + (DED / 2.0) RATE IND-RATE

YTD + RATE + DED / 2 YTD IND-YTD

PERF / 2 PERF IND-PERF

INTEGER(YTD - DED) * INTEGER(RATE) (WS-INT-FLD) WS-INT-FLD INT-YTD

HIREDTE + YEAR(CURRENT DATE) YEARS HIREDTE IND-HIREDTE

SUM(YTD) / 2 YTD IND-YTD

AVG(DED - 1) / 5 (WS-AVG-DED) WS-AVG-DED IND-DED

SUM(RATE) + SUM(DED) (WS-RATE-DED) WS-RATE-DED IND-RATE
Reference

FD 247

rfpubb.book Page 247 Tuesday, February 19, 2002 9:56 AM
FD

Category: Program Painter and Specification Editor keyword (see Keywords)

Purpose Define the file descriptions for input and output files, including report
files.

Syntax: Format 1:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 FD inputfilename|outputfilename
 [Applicable COBOL FD clauses]

Format 2:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 FD filename
 [Applicable COBOL FD clauses]
 .
 .
 .
 REPORT IS|REPORTS ARE reportname1 [... reportname15]

Comments: • Use one FD keyword per file description.

• In Format 1, follow each file description with the file record
description, using the 01, DS, REC, or ++ keywords.

• In Format 2:

• Reportnames may be in any order.

• Each Reportname must have a corresponding RED statement.
Reportnames in both statements must be identical.

• The RED statement for each report replaces the file record
description entry required for Format 1.

• The default size for a report record is 133. To define a different
report record size in your FD statement, calculate the size as
follows, and code it in a RECORD CONTAINS clause.

Record Size = Report mock-up size (maximum 247 characters)
+ 1 byte for carriage control
+ 2 bytes for the CODE clause, if used.
Reference

248

rfpubb.book Page 248 Tuesday, February 19, 2002 9:56 AM
• If you define the report record in the WRITE ROUTINE clause,
the default size is either 248 or 250. See WRITE ROUTINE.

• APS generates the file description 01-level identifier(s) for each
report output file(s); you need not code them.

• If reportname exceeds 20 characters, Report Writer creates an
abbreviated record name, as follows--the first character of each
hyphenated word in the data name (except the last word), a
hyphen, the last word, a hyphen, and RECORD. For example,

Input REALLY-LONG-REPORT-NAME
Output RLR-NAME-RECORD

Example: Report example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS.
 01 PART-STOCK-REC PIC X(80).
 FD REPORT-OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 REPORT IS STOCK-REPORT.

Field Edits

Category: Screen Painter feature

Description: Screen fields can be one of the following types:

• Character

• Numeric

• Date or time

Define the internal, input, and output data representation

Depending on the type of field you create, you assign field edits that
define the data representations for the field. APS supports the
following field edits.
Reference

Field Edits 249

rfpubb.book Page 249 Tuesday, February 19, 2002 9:56 AM
• Internal field edit values specify the COBOL picture characteristics
for storing data the end user enters. These include:

• Alphabetic, character, or numeric data type

• Internal length

• Binary or packed format

• Sign specification

• Right justification

• Input field edit values specify format and data requirements that
the end user must adhere to when entering data into the field.
These include:

• Required data

• Input mask

• Julian, Gregorian, system, or user-defined date type

• User-defined or system time type

• Minimum/maximum input requirements

• Testing for blank spaces or special characters

• Testing for numeric data

• Testing for specific values

• Zero-fill when blank

• Output field edit values specify the format requirements for
displaying the data. These include:

• Output mask

• Output picture

• Julian, Gregorian, system, or user-defined date type

• User-defined or system time type

• Right justification

• Commas

• Zero suppression
Reference

250

rfpubb.book Page 250 Tuesday, February 19, 2002 9:56 AM
• Floating, leading, and trailing symbols

• Values or conversion values ensure only certain values are entered.
You can test for:

• A specific value or range of values for input data

• Conversion values for input and output data representation to
define how data is stored and converted for output

• Application edit routines specify additional edits or tests for input
or output data. Edit routines can be paragraphs, subprograms, or
APS macros that you create. Or, you can select a predefined
application edit routine from a centralized listing of edit routines
maintained by your APS Administrator.

Specify global or specific error messages

When users fail to enter data correctly, you can display an error message
that explains the problem. You can define two error messages, one for
when the end user enters invalid data, and one for when the end user
neglects to enter data that is required.

These can be global messages that display for all screen fields, or
specific messages that display for individual fields. Messages defined for
a specific field override the global messages. You can also define
conditions for bypassing input edits under certain conditions.

Related Topics: See... For other information about Field
Edits...

Field Edit Values
Date and Time Field Edits

Assigning the internal picture, input
format and data requirements, and
output display format for:

• Character and numeric fields

• Date and time fields

Application Field Edit Routines Specifying editing and testing
routines for input or output data

Error Processing Messages Displaying error messages for invalid
field data

Values, Conversion Values, and
Value Ranges

Ensuring that fields accept only
certain data values
Reference

Field Edit Values 251

rfpubb.book Page 251 Tuesday, February 19, 2002 9:56 AM
Field Edit Values

Category: Screen Painter feature (see Field Edits)

Description: Specify the data storage requirements, the format and data
requirements that the end user must adhere to when entering data into
the field, and specify the format requirements for displaying the data.

Procedure: Follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 From either the Field Selection or Edit Selection screen, access the
Internal Picture, Input Editing, or Output Editing screen.

3 Assign data representations by completing the fields listed below.

4 From either the Input Editing or Output Editing screen, you can
transfer to:

Internal Picture

Values or
Conversions

Enter s to transfer to the Values or
Conversions screen to specify valid values,
ranges of values, or conversion values. See
Values, Conversion Values, and Value
Ranges.

Application Edits Enter s to transfer to the Application Editing
screen to specify your own edits in a
paragraph, subprogram, or APS macro. See
Application Field Edit Routines.

Error Processing Enter s to transfer to the Error Processing
screen to specify error messages and
attributes that display if the field fails input
edits. See Error Processing Messages.

Option Description

Data Type

A Aphabetic field.

C Default. Character field.

N Numeric field.
Reference

252

rfpubb.book Page 252 Tuesday, February 19, 2002 9:56 AM
Input Editing

G For KANJI use only. Extended Graphics
Character Set (EGCS).

Internal Length Enter the number of characters. The default is the
screen field length. For numeric fields, enter the
number of digits that precede the decimal point.

Justified Right Type s to generate right justification on the
COBOL picture.

Decimal Places Enter the number of digits that follow the decimal
point.

COMP (Binary) Type s to store input data in binary format. Not
valid with signed data.

COMP-3 (Packed) Type s to store input data in packed format. Not
valid with signed data.

Signed Type s to store the input data with either a
positive or negative value. Not valid with a binary
or packed format.

Sign Leading Type s to store the sign at the left of the number.
Not valid with a binary or packed format.

Sign Separate Type s to store the sign in a separate byte from the
number. Not valid with a binary or packed format.

Option Description

Field Description

Internal Picture Enter s to transfer to the Internal Picture
screen to change the storage format.

Required Enter s to indicate that the end user must enter
a value in the field.

Input Mask Enter the pattern or mask to accept input data
and separators. Or, enter s to transfer to the
Masking screen and specify the mask in the
Input Mask field. Note the following.

• Strip special characters on input if the
internal picture does not have space for
them. To remove special characters when
converting the data to the storage format,
enter s in the Strip Special Characters field
on the Masking screen. A special character
Reference

Field Edit Values 253

rfpubb.book Page 253 Tuesday, February 19, 2002 9:56 AM
is any character other than input mask
characters.

• Include optional mask characters on either
end of the mask, not on both ends.

• Required mask characters do not require
data entry; they require that any data is
entered be of that specific type. For
example, the A mask character requires an
alphabetic character in that position if any
data is entered

Note the following for character fields.

• The mask length, the mask characters plus
special characters, must equal the field
length.

• The number of mask characters, excluding
special characters, must equal the internal
picture length.

Note the following for numeric fields.

• Valid mask characters are 9 and N.

• The mask length cannot exceed the
internal picture length. If it is less, APS
places leading zeroes in the internal
picture.

• Include optional mask characters on either
end of the mask, not on both ends.

Minimum Input Enter the length of the shortest valid entry.
Default is zero. You cannot specify an input
mask with this option. This option does not
imply that data is required.

Maximum Input Enter the length of the longest valid entry.
Default is field length. You cannot specify an
input mask with this option. This option does
not imply that data is required.

No Embedded Spaces Enter s to reject characters separated by spaces.
Leading and trailing blank spaces are
unaffected by this option.

Field Description
Reference

254

rfpubb.book Page 254 Tuesday, February 19, 2002 9:56 AM
Output Editing

Numeric Test Enter s to allow only numeric data.

Numeric De-Edit Enter s to validate that the data is numeric and
to remove special characters. Select this option
if you specify an output COBOL picture; doing
so removes the special characters for data
computations. This option does not imply that
data is required. Not valid with an input mask.

Zero When Blank Move zero to the internal picture if no data is
entered. Not valid with required fields or fields
with input masks. To prevent zeroes from
appearing in the field when data is not
entered, zero suppress the output picture on
the Output Picture screen.

Minimum Digits Enter the smallest number of digits required
before the decimal point. Default is zero. You
cannot specify an input mask with this option.
This option does not imply that data is
required.

Minimum Decimals Enter the smallest number of digits required to
follow the decimal point. Default is zero. This
option does not imply that data is required.

Maximum Digits Enter the largest number of digits allowed
before the decimal point. Default is the
maximum number that fits in the internal
picture. Not valid with an input mask. This
option does not imply that data is required.

Maximum Decimals Enter the largest number of digits allowed to
follow the decimal point. Default is the
maximum number that fits in the internal
picture. This option does not imply that data is
required.

Field Description

Field Description

Internal Picture Enter s to transfer to the Internal Picture
screen to change the storage format.
Reference

Field Edit Values 255

rfpubb.book Page 255 Tuesday, February 19, 2002 9:56 AM
Comments: • When you change the internal picture of a field with existing edits,
a message warns you of the possible effects of changing the internal
picture for that field. Press Enter or F3 to proceed with the change
anyway.

Output Mask Enter the pattern or mask to position data and
separators. Or, enter s to transfer to the
Masking screen and specify the mask in the
Output Mask field. Note the following.

• The X character is the placeholder for
output data.

• The mask length must equal the screen
field length; the total number of Xs must
equal the internal picture length.

Output Picture Enter the output COBOL picture. Or, enter s to
transfer to the Output Picture screen and
specify the mask in the Picture field. You
cannot assign an output picture if you use an
output mask.

Right Justify Enter s to generate right justification for the
output format.

Insert Comma(s) Enter s to format data with commas in
appropriate positions.

Zero Suppression Enter s to generate the zero suppression
symbol.

Floating Symbol Enter a $, +, or - symbol to generate a floating
dollar, plus sign, or minus sign to the left of the
first digit.

Fixed Leading Symbol Enter a $, +, or - symbol to generate a fixed
dollar, plus sign, or minus sign in the leftmost
position.

Fixed Trailing Symbol Enter a $, +, or - symbol to generate a fixed
dollar, plus sign, or minus sign in the rightmost
position.

Field Description
Reference

256

rfpubb.book Page 256 Tuesday, February 19, 2002 9:56 AM
• APS verifies an edit mask depending on whether the field has
optional characters in an edit mask, as follows.

• To reverse commas and decimal points in the output picture of
numeric fields, such as ZZ.ZZZ.ZZ9,99, modify the CNTL(APSPROJ)
file in one of the following ways, and then compile the screen and
program.

• Code the following assignment statements in CNTL(APSPROJ),
where membername is the USERMACS member name that
contains the $TP-SPECIAL-NAMES macro definition. APS includes
the member for you. The $TP-SPECIAL-NAMES macro generates
the DECIMAL-POINT-IS-COMMA statement.

% &FE-DECIMAL-POINT-IS-COMMA = "YES"
% &FE-TP-SPECIAL-NAMES-MACMBR = "TPSPEC"|"membername"

Then, copy TPSPEC from &SSMAPS..CNTL to
&SSMDSN..USERMACS. Modify the $TP-SPECIAL-NAMES macro
as desired to generate statements in the SPECIAL-NAMES
paragraph.

• Code the following statement in CNTL(APSPROJ). The DC target
epilogue macro generates the DECIMAL-POINT-IS-COMMA
statement.

% &FE-DECIMAL-POINT-IS-COMMA = "YES"

Fields and Flags, Data Communication

CICS Invocation Mode

Description: To determine how to invoke a CICS program, APS/CICS provides the
following 88-level flags to indicate the mode of program invocation.

TP-INVOCATION-MODE PIC X(01).
 88 TP-TRANSID-INVOKED VALUE ’T’.

Optional Mask Characters Verification

No Left to right scan

Yes, on the left Left to right scan

Yes, on the right Right to left scan
Reference

Fields and Flags, Data Communication 257

rfpubb.book Page 257 Tuesday, February 19, 2002 9:56 AM
 88 TP-PROGRAM-INVOKED VALUE ’P’.
 88 TP-SCREEN-INVOKED VALUE ’S’.
 88 TP-LINK-INVOKED VALUE ’L’.

IMS DC Invocation Mode

Description: To determine how to invoke an IMS DC program, APS provides the
following 88-level program support variable flags.

TP-INVOCATION-MODE PIC X.
 88 TP-TRANSID-INVOKED VALUE ’T’.
 88 TP-PROGRAM-INVOKED VALUE ’P’.
 88 TP-SCREEN-INVOKED VALUE ’S’.

APS tests for a TRUE value to determine which invocation paragraph to
perform.

TP-TRANSID-INVOKED A transaction code entered on a blank screen
invokes the program.

TP-PROGRAM-INVOKED An XCTL call from another program invokes
the program.

TP-SCREEN-INVOKED The SEND call sends the screen and a PF key
or ENTER key invokes the program.

TP-LINK-INVOKED A LINK call from another program invokes
the program.

TP-TRANSID-INVOKED A transaction code invokes the program;
the input message contains no additional
data.

TP-SCREEN-INVOKED Program reads an input message consisting
of more than just the transaction code;
often this is screen data.

TP-PROGRAM-INVOKED A program, rather than a terminal, sends
the input message. Program-invoked mode
applies only to conversational programs.
Reference

258

rfpubb.book Page 258 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog Invocation Mode

Description: To determine how to invoke an ISPF Dialog program, APS provides the
following 88-level flags.

TP-INVOCATION-MODE PIC X(01).
 88 TP-TRANSID-INVOKED VALUE ’T’.
 88 TP-PROGRAM-INVOKED VALUE ’P’.
 88 TP-SCREEN-INVOKED VALUE ’S’.
 88 TP-LINK-INVOKED VALUE ’L’.

VSAM Batch

Description: Use APS-defined data fields and S-COBOL flags in your program.

TP-TRANSID-INVOKED Provided for upward compatibility; has no
function.

TP-PROGRAM-INVOKED A LINK call from another program invokes
the program.

TP-SCREEN-INVOKED The SEND call sends the screen and a PF key
or ENTER key invokes the program.

TP-LINK-INVOKED Provided for upward compatibility; has no
function.

Name Associated Calls Description

APS-END-PROCESS DB-PROCESS Flag that terminates a DB-
PROCESS loop. Example: TRUE
RESET-OBTAIN

ddname-RRN DB-OBTAIN
DB-PROCESS
DB-ERASE
DB STORE

Field that controls relative
record number (RRN) of a
retrieved or stored RRDS file
record; generates value for
the RELATIVE KEY clause of
the SELECT statement.

Ddname is the external file
name specified in the
subschema.

Generated field definition
ddname-RRN PIC 9(09).
Reference

Fields and Flags, Data Communication 259

rfpubb.book Page 259 Tuesday, February 19, 2002 9:56 AM
RRDS and ESDS Support

In RRDS processing, APS/VSAM generates ddname-RRN, deriving the
RRN (relative record number) of the current retrieved record. This
allows access to a specific RRN. The field value is the RRN of each
retrieved or stored record, and is updated after every successful
READNEXT operation.

Assign a RRN value to ddname-RRN prior to a DB-STORE, if the SELECT
statement ACCESS clause is either RANDOM or DYNAMIC.

An ESDS file is opened in I/O mode.

VSAM Online

Description: Use APS-defined data fields and S-COBOL flags in your program.

RESET-OBTAIN DB-OBTAIN
DB-PROCESS

Flag that resets browse to
beginning of file. Example:
TRUE RESET-OBTAIN

Name Associated Calls Description

Name Associated Calls Description

APS-shortrecname-VAR DB-OBTAIN
DB-STORE
DB-MODIFY
DB-PROCESS
DB-ERASE

Field that contains actual
record length after a
successful record retrieval
(direct or sequential for DB-
OBTAIN and DB-PROCESS).
Supplies value to dataarea in
CICS LENGTH option.

Shortrecname comes from
the subschema definition; it
is the REC card SHORT
keyword.

See also "Skip Sequence
Processing" below.

APS-END-PROCESS DB-PROCESS Flag that terminates DB-
PROCESS loop. Example:
TRUE RESET-OBTAIN
Reference

260

rfpubb.book Page 260 Tuesday, February 19, 2002 9:56 AM
APS-VSAM-NUMREC DB-ERASE Field that contains number
of records deleted after key-
qualified ERASE with partial
key length specified.

ddname-APS-
KEYnumber

DB-OBTAIN
DB-PROCESS

Field that contains APS-
generated key name for use
in skip-sequential processing.

Ddname is the subschema
file. See also "Skip Sequence
Processing" below.

Example: ORDER-APS-KEY1

ddname-RBA DB-OBTAIN
DB-PROCESS
DB-STORE

Field that contains relative
byte address (RBA) of a
retrieved, stored ESDS file
record; supplies value to CICS
RIDFLD option. See also
"ESDS Support" and "Skip
Sequence Processing" below.

Ddname is the subschema
file.

Generated field definition
ddname-RBA PIC S9(08)
COMP

ddname-RRN DB-OBTAIN
DB-PROCESS
DB-STORE

Field that contains relative
record number (RRN) of a
retrieved or stored RRDS file
record; supplies value to CICS
RIDFLD option. See also
"RRDS Support" and "Skip
Sequence Processing" below.

Generated field definition
ddname-RRN PIC S9(08)
COMP

RESET-OBTAIN DB-OBTAIN
DB-PROCESS

Flag that resets browse to
beginning of file. When used
with PREV, resets to end of
file. Example: TRUE RESET-
OBTAIN

Name Associated Calls Description
Reference

Fields and Flags, Data Communication 261

rfpubb.book Page 261 Tuesday, February 19, 2002 9:56 AM
ESDS Support

Ddname-RBA provides access to a specific relative byte address (RBA).
The current retrieved or written (stored) record determines the RBA;
every successful READNEXT, READPREV, and WRITE operation updates
the RBA. Note the following.

• DB-ERASE cannot delete a record from an ESDS file.

• The operator must be EQUAL or = for a direct or positional DB-
OBTAIN and for a qualified DB-PROCESS.

• Assign ddname-RBA an RBA value prior to a DB-STORE or direct
(key-specified) call.

• If a key qualification specifies a non-existent RBA, the ILLOGIC
condition occurs (the DB status flag AB-ON-REC). The APS-supplied
abnormal condition processing may need to be customized to access
this condition.

RRDS Support

Ddname-RRN provides access to a specific relative record number (RRN).
The current retrieved determines the RRN; every successful READNEXT
and READPREV operation updates the RBA.

Assign ddname-RRN a RRN value prior to a DB-STORE or direct (key-
specified) call.

Skip Sequence Processing

Skip-sequential processing moves new key search criteria to an APS-
generated key while an active sequential DB-OBTAIN or DB-PROCESS
browse is in progress. The following indicates the APS-generated keys
by target.

File Type Record Key

ESDS ddname-RBA PIC S9(08) COMP.

RRDS ddname-RRN PIC S9(08) COMP.

KSDS ddname-APS-KEYnumber

Number indicates the key number, as follows:
1 = Prime record key
The remaining numbers correspond to the order of the
DDI IDX subschema cards for that record.
2 = First alternate index,
3 = Second alternate index, . . .
Reference

262

rfpubb.book Page 262 Tuesday, February 19, 2002 9:56 AM
Variable Length Files

APS/VSAM provides the APS-shortrecname-VAR field, which contains
length information for variable length files, for each record definition
in the subschema.

APS-shortrecname-VAR must be updated with the calculated record
length prior to all DB-STORE and DB-MODIFY calls.

For example, the following updates APS-CUST-VAR with the actual
length of CUST-RECORD prior to the DB-STORE.

APS-CUST-VAR = WS-FIXED-PORTION +
... (CUST-NBR-ORDERS * WS-OCCURS-LENGTH)
DB-STORE REC CUST-RECORD

Field/Screen Cross Reference (SC02)

Category: APS-generated report (see Application Reports)

Description: The Field/Screen Cross Reference Report lists all the screens containing
I/O fields, along with the attribute values for the field in each screen.
The fields appear alphabetically on the report. For each field, the report
lists the field attributes assigned in the Screen Painter, and the number
of field occurrences within a repeated block. The reports denotes
default values with periods (..). The end of the report shows the total
number of fields cross-referenced, the associated screens reported, and
the actual number of stored screens. The report documents this aspect
of your application to support future maintenance and enhancement
efforts.

Comments: • Produce the Field/Screen Cross Reference Report from the
Documentation Facility.

• To select all fields, leave all fields on this screen blank.

• To select a specific field, type its name in the Equal field.

• To select a range of fields, select the subset you need by entering a
Greater value, a Less value, or both. Use alphabetic characters to
indicate the range; full field names are not necessary. For example,
Reference

Field/Screen Cross Reference (SC02) 263

rfpubb.book Page 263 Tuesday, February 19, 2002 9:56 AM
to list fields with names beginning with letters K through Z, type K
in the Greater field.

Example:

REPORT CODE: SC02 APS SCREEN PAINTER PAGE 1
 FIELD/SCREEN CROSS REFERENCE 01/17/9211:57
 CLSAPS.CLS2
SELECTION CRITERIA:

 EDIT
FIELD SCREEN CC ROW COL LEN TYPE INTEN MDT NUMDET MASK MOD

A-ROW005-FLD001 AAAAA 5 2 7 UNPR
.. .
A-ROW008-FLD001 RXK001 8 26 25 UNPR
.. .
.
BASE-PRICE DLORDRM 5 17 44 10 UNPR
.. .
 D2ORDRM 5 17 44 10 UNPR
.. .
 LHORDRM 5 17 44 10 UNPR
.. .
 OXPARTL 8 11 49 10 UNPR
.. .
CUST-ENTRY-DATE EVOM 11 24 8 UNPR BRIGHT
.. .
 KSOM 11 24 8 UNPR BRIGHT
.. .
 LBOM 11 24 8 UNPR BRIGHT
.. .
 LJOM 11 24 8 UNPR BRIGHT
.. .
 PSOM 11 24 8 UNPR BRIGHT
.. .
 TDOJ 8 14 18 8 PROT
.. .
 TDOM 11 24 8 UNPR BRIGHT
.. .
 TIOM 11 24 8 UNPR BRIGHT
.. .
 TLOM 11 24 8 UNPR BRIGHT
.. .
 TPOM 12 22 5 UNPR BRIGHT
.. .
 WPORDI 8 14 18 8 PROT
.. .
.
.

 TOTAL FIELDS REPORTED: 113
 TOTAL SCREENS REPORTED: 112
 TOTAL SCREENS IN FILE: 112
Reference

264

rfpubb.book Page 264 Tuesday, February 19, 2002 9:56 AM
FRFM

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Pass COBOL or S-COBOL statements to the APS Generator without
translation, in a freeform manner, and insert the statements in the
program section where they are coded.

Syntax: Format 1, for Working-Storage and Linkage Sections only:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 FRFM COBOLstatements|S-COBOLstatements

Format 2, for Procedure Division only:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 ENTER COBOL|ENTER S-COBOL|++INCLUDE membername
 COBOLstatements|S-COBOLstatements

Comments: • The next keyword (except the comment keyword, /*) terminates the
FRFM function.

• In Format 1, all COBOL and S-COBOL statements shift four spaces to
the left during generation.

• In Format 2, omit the FRFM keyword; all COBOL statements remain
in Column 12 during generation.

• Do not use the ENTER COBOL and ENTER S-COBOL statements
within REPEAT or IF/ELSE-IF/ELSE structures.

Examples: Code 77-level data structures and put the data elements in column 8:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 FRFM 77 FIELD-A PIC S99 COMP-3.
 77 FIELD-B PIC S99 COMP-3.
 77 FIELD-C PIC S99 COMP-3.

Code 77-levels with Customizer symbols:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYWS &08+77 FIELD-A PIC S99 COMP-3.
 &08+77 FIELD-B PIC S99 COMP-3.
 &08+77 FIELD-C PIC S99 COMP-3.
Reference

Functions, SQL 265

rfpubb.book Page 265 Tuesday, February 19, 2002 9:56 AM
Functions, SQL

Category: Database call keywords (see Database Calls)

Compatibility: SQL target

Description: Code SQL built-in and scalar functions as keywords for the database
access calls DB-DECLARE, DB-OBTAIN, AND DB-PROCESS.

Syntax: For DB-DECLARE:

DB-DECLARE cursorname [correlname1.]copylibname-REC
... function1[(](expression)[,resultfield[,Y][)]]
... function2[(](expression)[,resultfield[,Y][)]]
 .
 .
 .
... functionN[(](expression)[,resultfield[,Y][)]]
... WHERE ...

For DB-OBTAIN:

DB-OBTAIN REC [correlname1.]copylibname-REC
... function1[(](expression)[,resultfield[,Y][)]]
... function2[(](expression)[,resultfield[,Y][)]]
 .
 .
 .
... functionN[(](expression)[,resultfield[,Y][)]]
... WHERE ...

For DB-PROCESS:

DB-PROCESS REC [correlname1.]copylibname-REC
... [DB-PROCESS-ID name]
... function1[(](expression)[,resultfield[,Y][)]]
... function2[(](expression)[,resultfield[,Y][)]]
 .
 .
 .
... functionN[(](expression)[,resultfield[,Y][)]]
... WHERE ...
Reference

266

rfpubb.book Page 266 Tuesday, February 19, 2002 9:56 AM
Comments: • If you code a column function, every column in the call must use
column functions, unless you code GROUP BY.

• You can mix scalar functions with individual column selections in a
call.

• If you apply a function against a single column, the result is
returned to the host variable. To override the result, specify a result
field in the call and either:

• Create a field in Working-Storage with the same data type as its
corresponding columns or expression result. For scalar functions,
the data type is determined by the function used and its
associated rules.

• Enter Y after the result field in the column function to let APS
create the field.

• If you apply a function against multiple columns, a literal, or an
expression for which there is no host-variable, declare a result field
in Working-Storage. The result field name can be as large as 26
characters; use COBOL naming conventions.

• If the function can return a null value, it requires an associated
indicator variable as follows.

• When APS creates the result field, it creates a null indicator
variable with the name based in the result field, such as
resultfield-IND.

• If you create the indicator variable in Working-Storage, use the
same naming convention so that APS can correctly name each
indicator variable in the resulting SQL.

• Limit resultfield to 26 characters, to allow room for -IND. Define
resultfield-IND as PIC S9(4) COMP.

• If you do not specify a result field with the COUNT function, the
APS-created field APS-COUNT-ROWS returns the COUNT result.

Examples: Select the minimum unit base price and count the number of colors it
finds for a given part number; create the result fields and appropriate
indicator variables in Working-Storage.

DB-DECLARE D2MAST-CURSOR D2TAB-REC
... MIN((PM_UNIT_BASE_PRICE),WS-PM-UNIT-BASE-PRICE,Y)
... COUNT((DISTINCT PM_COLOR),WS-PM-COLOR,Y)
... WHERE PM_PART_NO = :WS-PART-NO
Reference

Functions, SQL 267

rfpubb.book Page 267 Tuesday, February 19, 2002 9:56 AM
SQL code with MIN and MAX functions:

DB-OBTAIN REC D2TAB-REC
... MAX((PM_UNIT_BASE_PRICE),WS-MAX-PRICE,Y)
... MIN((PM_UNIT_BASE_PRICE * PM_UNITS),WS-MIN-RESULT,Y)
... WHERE PM_PART_SHORT_DESC = ’WIDGET’

Generated code:

EXEC SQL SELECT
 MAX(PM_UNIT_BASE_PRICE)
 MIN(PM_UNIT_BASE_PRICE * PM_UNITS)
 INTO :WS-MAX-PRICE, :WS-MAX-PRICE-IND
 :WS-MIN-RESULT :WS-MIN-RESULT-IND
 FROM AUTHID.D2MASTER
 WHERE PM_PART_SHORT_DESC = ’WIDGET’
END-EXEC.

SQL code with SUM and AVG functions:

DB-OBTAIN REC D2TAB-REC
... SUM(PM_UNITS)
... AVG((PM_UNITS),WS-AVG-UNITS,Y)
... WHERE PM_PART_NO = ’23432’

Generated code:

EXEC SQL select
 SUM(PM_UNITS)
 AVG(PM_UNITS)
 INTO :D2TAB-REC.PM-UNITS :IND-D2TAB-REC.IND-PM-UNITS,
 :WS-AVG-UNITS :WS-AVG-UNITS-IND
 FROM AUTHID.D2MASTER
 WHERE PM_PART_NO = ’23432’
END-EXEC.

SQL code with COUNT function:

DB-OBTAIN REC D2MASTER-REC
... MAX((PM-UNITS),WS-MAX-PM-UNITS)
... COUNT((*),WS-PM-COUNT-FLD)
... AVG((PM-UNIT-BASE-PRICE),WS-AVG-PRICE)
... WHERE PM-PART-SHORT-DESC=’WIDGET’
... AND PM-COLOR=’RED’

Generated code:

EXEC SQL select
 MAX(PM-UNITS)
 MIN(PM-UNIT-BASE-PRICE)
Reference

268

rfpubb.book Page 268 Tuesday, February 19, 2002 9:56 AM
 COUNT(*)
 AVG(PM-UNIT-BASE-PRICE)
 INTO WS-MAX-PM-UNITS WS-MAX-PM-UNITS-IND,
 WS-PM-COUNT-FLD,
 WS-AVG-PRICE WS-AVG-PRICE-IND
 FROM AUTHID.D2MASTER
 WHERE PM-PART-SHORT-DESC=’WIDGET’
 AND PM-COLOR=’RED’
END-EXEC.

SQL code with DATE, TIME, and AVG scalar functions:

DB-OBTAIN REC D2INVEN-REC
... IN_PART_NO
... DATE(IN_DATE_LAST_UPDTE)
... TIME((IN_TIME_LAST_UPDTE),WS-TIME-RETURN,Y)
... CHAR((IN_DATE_LAST_ORDER,ISO),WS-CHAR-RETURN)
... IN_QTY_ONHAND
... WHERE IN_PART_NO = ’23432’

Generated code:

EXEC SQL SELECT
 IN_PART_NO
 DATE(IN_DATE_LAST_UPDTE)
 TIME(IN_TIME_LAST_UPDTE)
 CHAR(IN_DATE_LAST_ORDER,ISO)
 IN_QTY_ONHAND
 INTO :D2INVEN-REC.IN-PART-NO,
 :D2INVEN-REC.IN-DATE-LAST-UPDTE
 :IND-D2INVEN-REC.IN-DATE-LAST-UPDTE,
 :WS-TIME-RETURN :WS-TIME-RETURN-IND,
 :WS-CHAR-RETURN :WS-CHAR-RETURN-IND,
 :D2INVEN-REC.IN-QTY-ONHAND
 :IND-D2INVEN-REC.IN-QTY-ONHAND
 FROM AUTHID.D2INVTRY
 WHERE IN_PART_NO = ’23432’
END-EXEC.

In this example, the following occurs.

• Field IN_DATE_LAST_UPDTE is of type DATE.

• Because the result field WS-TIME-RETURN is followed by Y and the
TIME function can return a null value, APS creates both a result field
with a picture appropriate for a TIME data type and a WS-TIME-
RETURN-IND indicator in Working-Storage.
Reference

GENERATE 269

rfpubb.book Page 269 Tuesday, February 19, 2002 9:56 AM
• Because the result field WS-CHAR-RETURN is not followed by Y and
the char function can return a null value, both the field and WS-
CHAR-RETURN-IND indicator variable were created in Working-
Storage.

GENERATE

Category: Report Writer statement (see Report Writer Structures in your APS
User’s Guide chapter Creating Reports with Report Writer)

Compatibility: Batch environments

Description: Produce either a detail report or a summary report; test controls;
generate control breaks; print totals, detail lines, headings, and
footings; clear counters and accumulators; and, paginate the report.

Syntax: GENERATE dataname|reportname

Parameters:

Comments: • On first GENERATE clause execution, APS saves the control values.
During other GENERATE executions, APS tests these control values
to determine control breaks until it detects one. When a control
break occurs, APS saves the new set of control values.

dataname Produce a detail report. Specify dataname in the
TYPE clause as DETAIL.

reportname Produce a summary report that contains no
detail lines. Use reportname only if the
referenced report group description contains:

• A CONTROL clause

• At least one REPORT HEADING, REPORT
FOOTING, CONTROL HEADING, CONTROL
FOOTING, or DETAIL group

• No more than one DETAIL report group
Reference

270

rfpubb.book Page 270 Tuesday, February 19, 2002 9:56 AM
• During report printing, APS processes PAGE HEADING and PAGE
FOOTING report groups for each page.

• When the first GENERATE clause of a report executes, APS processes,
in order, the report groups defined in the report description--
REPORT HEADING, PAGE HEADING, and CONTROL HEADINGs, (from
major to minor order).

• When GENERATE dataname executes, APS processes the designated
report group. When GENERATE reportname executes, APS performs
certain steps to process a DETAIL report group.

• When a GENERATE clause other than the first one executes, APS
locates control breaks. The rules for determining the equality of
control data items are the same as for relation conditions. If a
control break occurs:

• CONTROL FOOTING, USE procedures and CONTROL FOOTING,
SOURCE statements are able to access the control data item
values.

• APS processes the CONTROL FOOTING report groups in minor to
major order. APS does not process the CONTROL FOOTING
report groups of a higher level than where the control break
occurs.

• APS processes the CONTROL HEADING report groups in major to
minor order. APS does not process the CONTROL HEADING
report groups of a higher level than where the control break
occurs.

• GENERATE processing can only occur after INITIATE processing and
before TERMINATE processing, for the report.

• To generate large reports, enter bigrwt in the APS Parm field on the
Generator Options screen.

Example: See the APS User’s Guide chapter Creating Reports with Report Writer.
Reference

Generator Options 271

rfpubb.book Page 271 Tuesday, February 19, 2002 9:56 AM
Generator Options

Category: Application generation

Purpose Define the development environment for application, program, and
screen generation.

Procedure: To select generator options, follow these steps.

1 Access the Generator Options screen. To do so, from the APS
Options Menu enter option 2 in the Option field. Alternatively, from
any APS screen enter opt 2 in the Command field. The Generator
Options screen displays.

2 Set options appropriate for your environment as described below.

Option Description and Values

Target OS Operating system.

DC Data communications target. For valid DB/DC
combinations see DB/DC Target
Combinations.

DB Database target. For valid DB/DC
combinations see DB/DC Target
Combinations.

SQL SQL target.

Job Class Specify any job class valid at your site and
known to the APS generators.

Msg Class Site-specific.

Listgen Yes Generate a listing of generated code.
See the APS Error Messages manual for
sample.

No Default.

COBOL Yes Save generated COBOL program source
in the library or PDS appropriate for
your DC target. For the complete list of
libraries and PDSs.

No Default

Object Yes Save generated object code in
appropriate library.
Reference

272

rfpubb.book Page 272 Tuesday, February 19, 2002 9:56 AM
Comments: • To reinstate all options to their default installation values, enter
reset in the Command field.

No Default.

MFS/BMS Yes Save generated BMS or MFS mapsets in
the GENBMS or GENMFS libraries.

No Default.

GENSRC Yes Save generated source code in the
GENSRC PDS or data set.

No Default.

User Help Yes Enable generation of APS User Help
Facility source files.

No Default.

Job Dest Site-specific.

CARDIN Member Specify the CNTL library APSDBDC member.

Generate COBOL II Yes Generate COBOL II source code.

No Default.

COBOL Compiler 1 OS/VS COBOL (Generate COBOL II = No)

2 COBOL II

3 COBOL for MVS

CICS Release Specify the CICS release at your site.

IMS Release Specify the IMS release at your site.

SUPRA Yes Pass SUPRA procedural statements
through APS unchanged.

No Processes SUPRA procedural
statements.

APS Parm Override the APS Parm field on the
Precompiler Options screen. Display all
options whose default values you have
overridden in the Precompiler Options
screen. You can temporarily override these
values simply by overtyping them in this field,
but changes made here are not saved; they
remain in effect only until you exit APS.

COBOL Parm Specify parameters or directives for COBOL
compiler. See the COBOL Language
Operating Guide for valid values.

Option Description and Values
Reference

Generation Parameters, Screens 273

rfpubb.book Page 273 Tuesday, February 19, 2002 9:56 AM
• If you enter yes in the COBOL-II field, APS includes the new COBOL/2
generator support as well as MVS COBOL/2 compiler support. If you
want to continue using the COBOL/74 generator support in
conjunction with the COBOL/2 compiler, a fix will be provided.

Example:

Generation Parameters, Screens

Category: Screen Painter feature

Description: Change parameter values that affect the screen in any environment, as
desired. Applicable parameters and valid values on the Screen
Generation Parameters screen are:

Parameter Description and Values

Prt Asm Mac Expn F Default. Do not print expanded
assembler macros.

T Print macros.

No Assembler END F Default. Do not generate an
assembler END statement.

T Generate statement.

Retain Dataname F Default. Do not retain painted field
names as assembler labels.
Reference

274

rfpubb.book Page 274 Tuesday, February 19, 2002 9:56 AM
T Retain field names. Under BMS or
MFS, duplicate or invalid names can
occur due to the maximum number
of characters that BMS and MFS
allow.

Global Fld Unpro F Default. Do not unprotect all I/O
fields for prototyping.

T Unprotect all I/O fields.

Exattr Modifbl F Default. Do not modify extended
attributes at run time.

T Allow modification at run time;
generate EXTATTR=YES and extra
attribute bytes in DSECT.

Anything specified in this field has no effect
during prototyping.

Gen Panel KANA F For KANJI only. Default. Do not
generate the KANA keyword in the
ISPF panel) body header statement to
display Japanese Katakana.

T Display Japanese Katakana.

Unpro Fld Box F For KANJI only. Default. Do not
enclose unprotected I/O fields with
lines.

T Enclose unprotected I/O fields.

Kextattr Modifble F For KANJI only. Default. Do not
modify Format and Ruledline
attributes for text fields at run time.

T Modify at run time.

System Message NO or
blank

Default. Do not display system
messages.

YES or
SYSMSG

Display messages on last line of the
screen, if space is available.

fieldname Display messages in fieldname.

Parameter Description and Values
Reference

Generation Parameters, Screens 275

rfpubb.book Page 275 Tuesday, February 19, 2002 9:56 AM
CICS Parameters

YES, row,
length|YES,
row|YES,,
length

Display message of up to length
characters on specified row. Row
default is last line of screen. Length
can be from 40 to 70 characters or up
to 131 characters for MOD5 screens.

Intensity Change the intensity of all text fields.

N Default. Normal.

B Bright.

Color Change the color of all text fields.

NU Neutral

BL Blue

PK Pink

TQ Turquoise

RD Red

GN Green

YL Yellow

Blink
Rvideo
Underline

Set only one field to T(rue) for text fields. Blinking,
reverse video, and underline are mutually
exclusive.

Parameter Description and Values

Parameter Description and Values

Associated Trans Specify an associated transaction ID; default is the
first four characters of the screen. If more than
one screen begins with the same four characters,
you need to define a unique transid.

Mapset Name Override an APS-generated mapset name;
maximum seven characters. To generate a
multiple-map mapset that includes some or all
screens, assign the same mapset name to the
applicable screens in the application
Reference

276

rfpubb.book Page 276 Tuesday, February 19, 2002 9:56 AM
ISPF Prototype Parameter

IMS DC Parameters

The default mapset name reflects the number of
characters in the screen name, as follows.

4-character name: screennameSET
5-, 6-character name: screenname$
7-character name: screenname$; the $ replaces
the seventh character

Line Starting line of the map on the physical screen;
default is 001; value cannot exceed the screen
depth.

Parameter Description and Values

Parameter Description and Values

Associated Pgm Name of the program receiving control from the
screen; default program name is screenname.

Parameter Description and Values

Device Type Standard device characters for different model
terminals and printers. Defaults are IBM-
recommended device characters. See your IBM
MFS or IMS installation manual for further
details.

Cursor Feedback

F Default. Do not define a field in the MID as
the cursor feedback field.

T Provide cursor information for input
processing. To hold the information, APS
appends two halfword binary fields to the
screen record. screen-CURSOR-ROW and
screen-CURSOR-COL.

Cursor feedback fields do not affect output
cursor positioning.
Reference

Generation Parameters, Screens 277

rfpubb.book Page 277 Tuesday, February 19, 2002 9:56 AM
DIF-DOF Name Override APS-generated name. Default reflects
the number of characters in the screen name, as
follows.

4-character name: screennameDF
5-, 6-character name: screenname$
7-, 8-character name: screenname truncated to 6
characters

Optional Fld Name Specify fieldname or MFS PFKEY to hold the
trancode or operator logical paging command.
Alternatively, enter *PF and assign the PF key
value on the MFS Function Keys screen, or *TC
and construct a trancode on the Trancode
Construction screen.

MID Segment Exit:
Number
Vector

Generate the EXIT parameter on the MID
segment statement with Number as the exit
routine number and Vector as the exit vector
number. Valid values are:
Number: 0 to 127
Vector: 0 to 255

Opr Logical Paging F Default. Do not request operator logical
paging.

T Request paging. Enter name of field that
will contain the paging requests in the
Optional Fld Name field.

MID Name Override APS-generated name. Default reflects
the number of characters in the screen name, as
follows.

4-character name: screennameMI
5-, 6-, 7-character name: screennameI
8-character name: screennameI; the I replaces
the eighth character

MID Default Values F Default. Do not treat initial values as
default values for fields in the MFS-
generated MID.

T Treat initial values as default values.

Parameter Description and Values
Reference

278

rfpubb.book Page 278 Tuesday, February 19, 2002 9:56 AM
GROUP BY

Category: Database call clause (see Database Calls)

Compatibility: SQL target

Description: Apply column functions to data elements that are collected into groups
and define a hierarchy for these groups.

Comments: • Code GROUP BY with DB-DECLARE and DB-PROCESS only.

• Each column name in the SELECT list must be in the GROUP BY
statement, and vice versa.

• Use the ORDER BY keyword with GROUP BY to sort rows.

MOD Name Override APS-generated name. Default reflects
the number of characters in the screen name, as
follows.

4-character name: screennameMO
5-, 6-, 7-character name: screennameO
8-character name: screennameO; the O replaces
the eighth character

MOD Fill Char Generate fill characters in the MOD seqment
statement. Valid characters are --, NULL, PT, C, or
’x’, where x is any character value.

DSCA Override the Default System Control Area
default value of X’00A0’.

"Labeled" Screen F Do not append screen name to the input
message.

T Append the screen name.

Lines Per Page If device type is a printer, specify number of
lines to print on a page.

Trancode:
Literal

Specify any literal value as the trancode. Default
is the screen name.

Parameter Description and Values
Reference

GROUP BY 279

rfpubb.book Page 279 Tuesday, February 19, 2002 9:56 AM
• Separate each item in the GROUP BY and ORDER BY clauses with a
space; commas are optional.

• Use the HAVING clause, which acts as a WHERE clause, with GROUP
BY to identify or evaluate the groups you want to include. A
HAVING clause

• Directly follows the GROUP BY statement

• Names a grouping column or column function with its search
conditions or qualifications

• Can link qualifications with the Boolean operators AND and OR

• When coded with COUNT, can test the number of rows found
for a group. COUNT(*) operator value

Examples: This statement:

DB-PROCESS REC EMPLOYEE-REC
... DB-PROCESS-ID D2EMP
... EMP-DEPT
... MAX(EMP-SALARY)
... WHERE EMP-NAME NOT NULL
... GROUP BY EMP-DEPT
... ORDER BY EMP-DEPT

Results in:

EMP-DEPT EMP-SALARY
-------- ----------
FIN001 66700.000
FIN201 45250.000
MKT001 72300.000
PAY001 68800.000
PAY002 43500.000
SYS001 75000.000

This statement, which first groups rows by EMP-DEPT number, then
within department by EMP-SEX, and then calculates maximum rates and
salaries for each group:

DB-PROCESS REC EMPLOYEE-REC
... DB-PROCESS-ID D2EMP
... EMP-DEPT
... EMP-SEX
... MAX(EMP-RATE)
... MAX(EMP-SALARY)
... WHERE EMP-NAME NOT NULL
Reference

280

rfpubb.book Page 280 Tuesday, February 19, 2002 9:56 AM
... GROUP BY EMP-DEPT,EMP-SEX

... HAVING COUNT(*) > 2

... AND MIN(EMP-RATE) > 3

... ORDER BY EMP-DEPT,EMP-SEX

Results in:

EMP-DEPT EMP-SEX EMP-RATE EMP-SALARY
--------- ------- --------- ----------
FIN001 F 32.067 66700.000
FIN001 M 31.105 64700.000
FIN201 F 19.711 41000.000
FIN201 M 21.754 45250.000
PAY001 F 33.076 68800.000
PAY001 M 31.884 66320.000
SYS001 F 32.692 68000.000
SYS001 M 36.058 75000.000

GSAM Calls

Category: IMS database calls

Compatibility: IMS DB target

Description: Access GSAM databases.

Syntax: IM-CLSE view
IM-OPEN view
IM-OPEN-INP view
IM-OPEN-OUT view
IM-OPEN-OUTA view
IM-OPEN-OUTM view
IM-GN PCBname [ssa1 [...ssa15]]
IM-GU PCBname ssa1 [...ssa15]
IM-ISRT PCBname [ssa1 [...ssa15]]

Parameters: pcbname Database view; can be up to 20 characters.
Default is IO-PCB.
Reference

ID Parameters: 281

rfpubb.book Page 281 Tuesday, February 19, 2002 9:56 AM
Example: The following code:

$IM-OPEN ("PARDBINP")
$IM-OPEN-INP ("PARDBINP")
$IM-GN ("PARDBINP")

Generates in the Procedure Division:

CALL ’CBLTDLI’ USING
... IM-OPEN PARDBINP-PCB
MOVE PARDBINP-STATUS TO IM-STATUS
MOVE ’INP’ TO IM-IO-AREA
CALL ’CBLTDLI’ USING
... IM-OPEN PARDBINP-PCB
... IM-IO-AREA
MOVE PARDBINP-STATUS TO IM-STATUS
CALL ’CBLTDLI’ USING
... IM-GN PARDBINP-PCB
... GSAM-IN-IO-AREA
MOVE PARDBINP-STATUS TO IM-STATUS

ID Parameters:

Category: Program Painter and Specification Editor keyword (see Keywords:)

Compatibility: IDMS DB target

Description: Code native IDMS calls in the Data and Environment Divisions and pass
them through, without translation, to the precompile process.

ssa SSA (record search) arguments that trigger
COBOL MOVEs to or from the generated I/O area
IM-IO-AREA. Default is IM-IO-AREA with a length
of 32,000 bytes; set IM-IO-AREA-LEN in your
program or DDISYMB member to override the
length.

Specify only one SSA per hierarchical level along
a path. These arguments generate 8-byte records
in Working-Storage to hold the corresponding
values.

view Database view. Must correspond to a GSAM PCB.
Reference

282

rfpubb.book Page 282 Tuesday, February 19, 2002 9:56 AM
Syntax: Data Division:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IDCS IDMSControlSectionstatements
 .
 .
 .

Environment Division:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IDSS SchemaSectionstatements
 .
 .

Comments: • The IDCS keyword generates an IDMS-Control Section at the top of
the Environment Division. All statements adjacent to or following
this keyword and preceding the next keyword pass through to the
generated program, starting in column 8.

• The IDSS keyword generates a Schema Section at the top of the
Data Division. All statements adjacent to or following this keyword
and preceding the next keyword pass through to the generated
program, starting in column 8.

IDM-COMMIT

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Write a COMT checkpoint to the IDMS journal file to designate the start
or end of specific database accessing activities associated with the
issuing run unit and release all record locks except select locks held on
current records.

Syntax: IDM-COMMIT [ALL]

Parameter: ALL Release all record locks and set all currencies to
null.
Reference

IDM-CONNECT 283

rfpubb.book Page 283 Tuesday, February 19, 2002 9:56 AM
Example: Write a COMT checkpoint to the IDMS journal file; release all record
locks held on current records; set all currencies to null.

IDM-COMMIT ALL

IDM-CONNECT

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Connect the named record to the named set.

Syntax: IDM-CONNECT REC [recordname] TO setname

Parameters:

Comments: • Make the owner record current of its record type, and if needed,
establish position by walking the set.

• Recordname is optional because the record is previously located by
a DB-OBTAIN REF.

Example Connect record type ORDER to CUSTOMER-ORDER. Note that owner
record is current of record type.

MOVE SCR-ORDER-NUM TO ORDERNUM
MOVE SCR-QTY-ORD TO ORDER-QTY
DB-STORE REC ORDER
IF OK-ON-REC
 MOVE SCR-ORDER-NUM TO ORDER-NUM
 MOVE SCR-QTY-ORD TO ORDER-QTY
 DB-OBTAIN REC CUSTOMER WHERE CUST-NUMBER = WS-CUST-KEY
 IF OK-ON-REC
 IDM-CONNECT REC ORDER TO CUSTOMER-ORDER

TO setname

Connect record to specified IDMS set name.

REC [recordname] Retrieve specified record. Define recordname as
a member of the set and current of its record
type. Put any area(s) that the set uses in an
update mode.
Reference

284

rfpubb.book Page 284 Tuesday, February 19, 2002 9:56 AM
 IF AB-ON-REC
 PERFORM 950-ERROR-RTN

IDM-DISCONNECT

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Disconnect the record from the set in which it participates as an
optional member.

Syntax: IDM-DISCONNECT REC [recordname] FROM setname

Parameters:

Comment: Recordname is optional because the record is previously located by a
DB-OBTAIN REF.

Example: Disconnect record type ORDER from CUSTOMER-ORDER.

DB-OBTAIN REF CUSTOMER REC ORDER
IF OK-ON-REC
 IDM-DISCONNECT REC ORDER FROM CUSTOMER-ORDER
 IF AB-ON-REC
 PERFORM 950-ERROR-RTN

FROM setname Disconnect record from specified IDMS set name.

REC [recordname] Retrieve specified record. Define recordname as
a member of the set and current of its record
type. Put any area(s) that the set uses in an
update mode.
Reference

IDM-IF 285

rfpubb.book Page 285 Tuesday, February 19, 2002 9:56 AM
IDM-IF

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Determine if a data set is empty or if a record is a member of a given
set; perform logic if condition is met.

Syntax: IDM-IF SET setname [EMPTY|NOT EMPTY]
... [MEMBER|NOT MEMBER] paragraphname

Parameters:

Examples: IDM-IF SET DEPT-EMPLOYEE MEMBER 2000-GET-OWNER

IDM-IF SET DEPT-EMPLOYEE NOT MEMBER
... 2100-NO-OWNER

IDM-IF SET DEPT-EMPLOYEE NOT EMPTY
... 3100-GET-EMPS

IDM-PROTOCOL

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Specify the program execution mode and the location of IDMS record
descriptions.

[NOT] EMPTY Specify if there are member records for setname.

[NOT] MEMBER Specify if the record, that is current of RUN-UNIT,
is a member of setname.

paragraphname Perform paragraphname when IF condition is
met.

SET setname Specify IDMS set name.
Reference

286

rfpubb.book Page 286 Tuesday, February 19, 2002 9:56 AM
Syntax: -KYWD- 12--*--20---*----30----*---40---*----50---*----60
 SYEN IDM-PROTOCOL programmode location

Parameters:

Comments: • APS generates IDM-PROTOCOL based on values found in the
Application View, unless you code this call or code the IDCS
keyword. The location for generated protocols is Working-Storage.

• Code MANUAL to control DB-BIND processing.

• If &IDM-GEN-AUTOSTATUS is set to YES in .CNTL(APIDMSIN), APS
generates the appropriate autostatus protocol and copies the IDMS-
STATUS paragraph to the program. For each DML command
executed, APS checks the error status and performs IDMS-STATUS
for an abnormal condition. Valid error status codes for DML
commands are in .CNTL(APSIDMSIN).

• If &IDM-GEN-AUTOSTATUS is set to NO, APS generates the
appropriate non-autostatus protocol; the value of &IDM-GEN-IDMS-
STATUS determines if IDMS-STATUS is copied to the program. No
automatic error checking occurs.

Example: Set the protocol for an IDMS CICS program; place IDMS record
descriptions in Working-Storage.

IDM-PROTOCOL CICS-EXEC-AUTO W-S

programmode Execution mode. Refer to the IDMS COBOL
Programmer’s Guide for valid program modes.

location Place IDMS record descriptions copied from the
IDMS Dictionary in this program area. Valid
values are:

L-S or LS Linkage Section

W-S or WS Working-Storage

MANUAL Generate an IDMS-Records
Manual statement within
Working-Storage; generate COPY
and BIND statements for records
referenced within the program.
Reference

IDM-RETURN 287

rfpubb.book Page 287 Tuesday, February 19, 2002 9:56 AM
IDM-RETURN

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Return the database key and symbolic key (optional) from an indexed
set via a currency or key value.

Syntax: IDM-RETURN dataname FROM indexsetname
... [CURRENCY [FIRST|LAST|NEXT|PRIOR]]
... [USING keyfield]
... [KEY INTO keyfield]

Parameters:

Examples IDM-RETURN WS-SAVE-DBKEY FROM IX-EMP-NAME
... CURRENCY

IDM-RETURN WS-SAVE-DBKEY FROM IX-EMP-NAME
... FIRST CURRENCY

IDM-RETURN WS-SAVE-DBKEY FROM IX-EMP-NAME

IDM-RETURN WS-SAVE-DBKEY FROM IX-EMP-NAME
... USING WS-EMP-KEY

IDM-RETURN WS-SAVE-DBKEY FROM IX-EMP-NAME
... FIRST CURRENCY KEY INTO WS-EMP-KEY

CURRENCY Retrieve database key based on currency within
the indexed set. If CURRENCY or USING is not
coded, default is CURRENCY.

dataname Return the database key into the named
Working-Storage field. Define as PIC S9(08)
COMP SYNC.

KEY INTO keyfield Return the symbolic key obtained from the
indexed set into Working-Storage keyfield.
Currency specification is optional.

USING keyfield Use the value of keyfield to sea"rch the index
and return the database key. See also
"Comments:" below. If USING is not coded,
default is CURRENCY.
Reference

288

rfpubb.book Page 288 Tuesday, February 19, 2002 9:56 AM
IDM-ROLLBACK

Category: Database call (see Database Calls)

Compatibility: IDMS DB target

Description: Write an ABRT checkpoint to the IDMS journal file to recover the
recovery unit (the part of the run unit falling between two
checkpoints); allow the run unit to continue accessing the database
without issuing the DB-BIND and DB-OPEN calls.

Syntax: IDM-ROLLBACK [CONTINUE]

Parameter:

Comments: • All currencies are nullified.

• If CONTINUE is coded, the recovery unit rolls back (recovers), but the
run unit does not terminate. Database access resumes, without BIND
and READY calls. Any character string is valid for a continue.

IDMS

Category: IDMS statement

Compatibility: IDMS DB target

Description: Code native IDMS calls in the Procedure Division and pass them
through, without translation, to the precompile process.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IDCS IDMS nativecall
 .
 .

CONTINUE Specify recovery unit is to roll back.
Reference

IDMS DB Sample Programs 289

rfpubb.book Page 289 Tuesday, February 19, 2002 9:56 AM
Comments: • In the Procedure Division, begin every IDMS statement with the
IDMS verb, typed in columns 12 to 72. Begin subsequent lines of the
statement with a continuation ellipsis; do not use %

• The IDMS Procedure Division statement generates, a $IDMS rule.
This rule generates IDMS COBOL at compile time. APS considers any
code adjacent to the IDMS verb the first rule parameter, the next
line the second parameter, and so on.

• See also ID Parameters:

Example: -KYWD- 12--*--20---*----30----*---40---*----50---*----60
 IDMS OBTAIN FIRST CUST-REC
 ... WITHIN CUST-REGION

Generated rule:

$IDMS ("OBTAIN FIRST CUST-REC",
% ... "WITHIN CUST-REGION")

IDMS DB Sample Programs

Compatibility: IDMS DB target

Batch Program:

-LINE- -KYWD- 12--*--20---*----30----*---40---*----50---*---60
000100 SYM1 % SET NOBLANK
000200 &07*NO-ACTIVITY-LOG
000300 &07*DMLIST
000800 PROC
001000 DB-OPEN MODE UPDATE
001100 DB-OBTAIN REC CUSTOMER FIRST AREA CUSTOMER-REGION
001300 IF OK-ON-REC /* APS IDMS 1.7 FLAG
001400 DISPLAY ’FIRST CUSTOMER IS ’ CUST-NAME
001500 REPEAT
001600 DB-OBTAIN REC CUSTOMER
001601 ... NEXT AREA CUSTOMER-REGION
001700 UNTIL NOT OK-ON-REC
001701 DISPLAY ’NEXT CUSTOMER IS ’ CUST-NAME
001710 IF END-ON-REC
001720 DISPLAY ’END OF AREA SWEEP’
001730 ELSE-IF VIO-ON-REC
Reference

290

rfpubb.book Page 290 Tuesday, February 19, 2002 9:56 AM
001740 DISPLAY ’IDMS RULE VIOLATION ’ ERROR-STATUS
001750 ELSE
001760 DISPLAY ’CATCH-ALL ERROR ’ ERROR-STATUS
001770 ELSE-IF POS-ON-REC
001780 DISPLAY ’CANNOT POSITION WITHIN CUST AREA ’
001781 ... ERROR-STATUS
001790 ELSE-IF VIO-ON-REC
001791 DISPLAY ’IDMS RULE VIOLATION OCCURRED ’
001792 ... ERROR-STATUS
001793 ELSE
001794 DISPLAY ’CATCH-ALL ERROR ’ ERROR-STATUS
001800 DB-CLOSE

• Line 100--The SYM1 keyword places FMP symbols and other
statements before the Identification Division.

• Line 200--&07*NO-ACTIVITY-LOG is an IDMS translator directive to
turn off the program statistics that are kept in the IDD. We
recommend that you set the Dictionary Update parameter on the
IDMS Options window.

• Line 300--&07*DMLIST is an IDMS translator directive, which sets the
IDMS option to list the native DML calls prior to converting them.
We recommend that you set the DMLIST parameter on the IDMS
Options window.

• Line 800--The PROC keyword indicates that the following
statements are procedural and generates the Procedure Division
statement.

• Line 1000--DB-OPEN executes before any other database call. It
translates into the IDMS/R READY command. This example readies
the database in update mode.

• Line 1100--DB-OBTAIN retrieves the first customer record found
within customer-region.

• Line 1300--IDMS flag OK-ON-REC tests for normal database
conditions.

• Line 1600--DB-OBTAIN retrieves the next customer record found
within the customer region.

• Line 1800--DB-CLOSE notifies IDMS that database processing for this
program is complete, frees any locked records, and nullifies all
database currency. If the program logic requires additional DB
processing, an appropriate ready command must be executed. DB-
CLOSE translates into the IDMS/R FINISH command.
Reference

IDMS DB Sample Programs 291

rfpubb.book Page 291 Tuesday, February 19, 2002 9:56 AM
Program with Generated Code:

Program Painter code:

-KYWD- 12--*---20---*----30----*---40---*---50---*---60---*
 IDCS
 PROTOCOL. MODE IS BATCH DEBUG
 IDMS-RECORDS IN WORKING-STORAGE SECTION
 IDSS DB SAMPSS WITHIN SAMPSCH.
 OPT PROG
 NTRY
 PARA MAIN-PARA.
 COPY IDMS SUBSCHEMA-BINDS
 IDMS READY USAGE-MODEL IS RETRIEVAL
 TP-PERFORM IDMS-STATUS
 TP-PERFORM PROCESS-CUSTOMERS
 IDMS FINISH
 PARA PROCESS-CUSTOMERS.
 IDMS OBTAIN FIRST CUST-REC WITHIN CUST-REGION
 IF ERROR-STATUS GREATER THAN ’0000’
 TP-PERFORM ABORT-PARA
 ELSE
 TP-PERFORM DISPLAY-CUSTOMER
 REPEAT
 IDMS OBTAIN NEXT CUST-REC WITHIN CUST-REGION
 UNTIL ERROR-STATUS GREATER THAN ’0000’
 TP-PERFORM DISPLAY-CUSTOMER
 IF ERROR-STATUS = ’0307’
 DISPLAY ’***** END OF CUST-REGION *****’
 ELSE
 PERFORM ABORT-PARA
 PARA DISPLAY-PARA.
 DISPLAY SPACE
 DISPLAY ’CUST-REC = ’ CUST-REC
 PARA ABORT-PARA.
 DISPLAY SPACE
 DISPLAY ’***** READ FAILURE *****’
 DISPLAY ’ERROR-STATUS = ’ ERROR-STATUS
 IDMS FINISH
 STOP RUN

Generated S-COBOL program:

% &AP-GEN-VER = 1719
% &AP-PGM-ID = "TSTIDMS"
% &AP-GEN-DB-TARGET = "VSAM"
% &AP-TP-ENTRY-KYWD-SEEN = 1
% &AP-SUBSCHEMA = ""
% &AP-APPLICATION-ID = "TSTIDMS"
Reference

292

rfpubb.book Page 292 Tuesday, February 19, 2002 9:56 AM
% &AP-GEN-DATE = "870105"
% &AP-GEN-TIME = "15482536"
IDENTIFICATION DIVISION.
PROGRAM-ID. TSTIDMS.
AUTHOR. AP-SYSTEM GENERATED.
DATE-WRITTEN. 870105.
DATE-COMPILED. &COMPILETIME.
ENVIRONMENT DIVISION.
IDMS-CONTROL SECTION.
PROTOCOL. MODE IS BATCH DEBUG
 IDMS-RECORDS WITHIN WORKING-STORAGE SECTION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. &SYSTEM.
OBJECT-COMPUTER. &SYSTEM.
DATA DIVISION.
SCHEMA SECTION.
DB SAMPSS WITHIN SAMPSCH.
WORKING-STORAGE SECTION.
$TP-WS-MARKER
$TP-COMMAREA
$TP-ENTRY ("", "")
MAIN-PARA.
 COPY IDMS SUBSCHEMA-BINDS
 $IDMS ("READY USAGE-MODEL IS RETRIEVAL")
 $TP-PERFORM ("IDMS-STATUS")
 $TP-PERFORM ("PROCESS-CUSTOMERS")
 $IDMS ("FINISH")
PROCESS-CUSTOMERS.
 $IDMS ("OBTAIN FIRST CUST-REC",
 % ... "WITHIN CUST-REGION")
 IF ERROR-STATUS GREATER THAN ’0000’
 $TP-PERFORM ("ABORT-PARA")
 ELSE
 $TP-PERFORM ("DISPLAY-CUSTOMER")
 REPEAT
 $IDMS ("OBTAIN NEXT CUST-REC WITHIN CUST-REGION")
 UNTIL ERROR-STATUS GREATER THAN ’0000’
 $TP-PERFORM ("DISPLAY-CUSTOMER")
 IF ERROR-STATUS = ’0307’
 DISPLAY ’***** END OF CUST-REGION *****’
 ELSE
 PERFORM ABORT-PARA
DISPLAY-PARA.
 DISPLAY SPACE
 DISPLAY ’CUST-REC = ’ CUST-REC
ABORT-PARA.
 DISPLAY SPACE
 DISPLAY ’***** READ FAILURE *****’
Reference

IDMS Options 293

rfpubb.book Page 293 Tuesday, February 19, 2002 9:56 AM
 DISPLAY ’ERROR-STATUS = ’ ERROR-STATUS
 $IDMS ("FINISH")
 STOP RUN

IDMS Options

Compatability: IDMS DB target

Category: Application generation

Description: Define processing environment for application and program
generation.

Procedure: 1 From the APS Options Menu enter option 7 in the Option field.
Alternatively, from any APS screen enter opt 7 in the Command or
Option field. The IDMS Options screen displays.

2 Specify IDMS options appropriate for your environment.

Option Description and Values

Dictionary Name Specify the dictionary name.

Central Version or Local Specify the compile environment. APS
generates a SYSTRNL with a unique
DSN whose high level qualifier is your
user ID.

cv Default. Central Version.

local When you specify local, also
enter a volume in the IDMS
Local Jrnl Disk Vol field.

dummy When you specify dummy,
APS generates a SYSTRNL DD
DUMMY

IDMS Local Jrnl Disk Vol Local compile disk volume for journal.

Dictionary Update Yes Log program compile
information to the
dictionary.
Reference

294

rfpubb.book Page 294 Tuesday, February 19, 2002 9:56 AM
IF/ELSE-IF/ELSE

Category: S-COBOL structure (see S-COBOL Structures)

Description: Evaluate a condition.

No Default. Do not log program
compile information.

IDMS DMLC Output to
PDS

Yes Write DMLC compile
statements to a PDS. If you
enter yes, you must allocate
a &DSN..IDMSOUT PDS prior
to compilation.

No Default. Do not write DMLC
compile statements to a PDS.

IDMS Loadlib Qualifier Specify full qualifiers for
IDMS..LOADLIB.

IDMS SYSCTL DSN Optional. Specify DSN of IDMS
dictionary.

CV Node Name Name of central version DDS
(Distributed Database System) node
under which loadlib program compiles.

DMLIST (List Generation) Yes Generate list.

No Default.

Generate DB-BIND in
Pgm

Yes Generate the DB-BIND
macro.

No Suppress the generation of
the DB-BIND macro. Code
the DB-BIND macro in your
program.

IDMS Password N/A

Option Description and Values
Reference

IF/ELSE-IF/ELSE 295

rfpubb.book Page 295 Tuesday, February 19, 2002 9:56 AM
Syntax: Format 1:

IF condition1
 statementblock
[ELSE-IF|ELSE IF condition2
 statementblock
 .
 .
 .
 ELSE-IF|ELSE IF conditionN
 statementblock]
[ELSE
 statementblock]

Format 2:

COBOLimperativestatement
... COBOLconditionalclause
 statementblock
ELSE-IF|ELSE IF condition1
 statementblock
[.
 .
 .
ELSE-IF|ELSE IF conditionN
 statementblock]
[ELSE
 statementblock]

Logic Execution:

• When IF condition1 is true, its statement block executes. Control
then passes to the next statement at the same or less indented level
as the IF statement (other than related ELSE-IF or ELSE statements
which, by definition, are at the same level as their IF).

• When IF condition1 is false, S-COBOL looks for ELSE-IF statements at
the same level. If such ELSE-IF statements are present, the conditions
are evaluated one after the other. If one of the conditions is true, its
statement block executes. Control then passes to the next statement
at the same or less indentation as the IF statement (other than
related ELSE-IF or ELSE statements).

• If no ELSE-IF statements are present, or if the IF condition and the
ELSE-IF conditions are all false, control passes to the statement block
subordinate to the ELSE statement; if no ELSE statement is present,
control passes to the next statement at the same or less indentation
as the IF and ELSE-IF statements.
Reference

296

rfpubb.book Page 296 Tuesday, February 19, 2002 9:56 AM
• If an ELSE-IF statement has no subordinate statement block and the
condition is true, control passes to the next statement at the same
or less indentation level as the ELSE-IF statement.

Comments: • You can nest up to fourteen IF levels.

• The last IF, ELSE-IF, or ELSE coded in a related series requires a
subordinate statement block.

• You can use the IF construct to code the NEXT SENTENCE concept of
passing program control out of a particular construct to the next
executable statement. See the example below.

• With Format 2, you can form conditional constructions similar to IF,
ELSE-IF, ELSE by combining a COBOL imperative verb and its
conditional clauses with ELSE-IF and ELSE statements. Verbs that
permit this construction are

ADD, RETURN, CALL, REWRITE, COMPUTE, START, DELETE,
STRING, DIVIDE, SUBTRACT,
MULTIPLY, UNSTRING, READ, WRITE.

• AT END and INVALID KEY conditional clauses can be combined with
ELSE-IF and ELSE statements.

Examples: If line 2020 is false, pass control back to line 1020, the first statement
after the PERFORM statement, because there is no ELSE-IF or ELSE
coding associated with this IF, and the first character at the same or less
indentation as this IF is a new paragraph name, which denotes the end
of the preceding PERFORMed paragraph. If the line 2020 condition is
true, execute its subordinate statement block (lines 2030 through 2170)
and return control to line 1020.

After line 2030 is executed, test line 2040. If the condition in line 2040 is
true, execute lines 2050 through 2071; pass control to line 2170. If line
2040 is false, test line 2080, etc. If lines 2040, 2080, and 2120 are false,
execute the ELSE statement block (line 2160) and pass control to line
2170.

 -LINE- -KYWD- 12-*----20---*----30---*----40---*----50----
 001010 PERFORM EMPLOYEE-BENEFIT-DEDUCTION
 001020 MOVE ...
 .
 .
 .
 002010 PARA EMPLOYEE-BENEFIT-DEDUCTION
 002020 IF EMPL-COVERAGE NOT = SPACES
Reference

IF/ELSE-IF/ELSE 297

rfpubb.book Page 297 Tuesday, February 19, 2002 9:56 AM
 002030 PERFORM CALC-BASIC-BEN
 002040 IF EMPL-COVERAGE-TYPE = ’EXTRA’
 002050 PERFORM CALC-EXTRA-BEN
 002060 PERFORM CALC-DENTAL-BEN
 002070 BEN-FIELD = XTRA-BEN +
 002071 ... DENTAL-BEN
 002080 ELSE-IF EMPL-COVERAGE-TYPE =
 002081 ... ’FAMILY’
 002090 PERFORM CALC-FAMILY-BEN
 002100 PERFORM CALC-DENTAL-BEN
 002110 BEN-FIELD = FAMILY-BEN +
 002111 ... DENTAL-BEN
 002120 ELSE-IF EMPL-COVERAGE-TYPE =
 002121 ... ’DENTAL’
 002130 PERFORM CALC-DENTAL-BEN
 002140 BEN-FIELD = BASIC-BEN +
 002141 ... DENTAL-BEN
 002150 ELSE
 002160 BEN-FIELD = BASIC-BEN
 002170 EMPL-DED-FIELD =
 002171 ... BEN-FIELD * .5 / 12
 002180
 002190 PARA CALC-BASIC-BEN

Nest conditional statements.

IF condition1
 statementblock1
 IF condition2
 IF condition3
 statementblock2
 ELSE-IF condition4
 ELSE-IF condition5
 statementblock3
 ELSE
 statementblock4
 ELSE
 statementblock5
 IF condition6
 IF condition7
 statementblock6

 statementblock7

Make the MULTIPLY function conditional by ON SIZE ERROR.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 WS-NET-PAY = EMP-HOURS *
 ... EMP-HOURLY-RATE
Reference

298

rfpubb.book Page 298 Tuesday, February 19, 2002 9:56 AM
 ... ON SIZE ERROR
 PERFORM PRINT-ERROR-MESSAGE
 DISPLAY SSNO WS-NET-PAY
 WS-NET-PAY WS-DEDUC = 0
 ELSE-IF EMP-HOURLY-RATE =
 ... MIN-WAGE
 PERFORM CALC-DEDUC-MIN
 ELSE-IF EMP-HOURLY-RATE < 5.00
 PERFORM CALC-DEDUC-1
 ELSE-IF EMP-HOURLY-RATE >= 5.00
 PERFORM CALC-DEDUC-2
 IF EMP-HOURLY-RATE > 20.00
 DISPLAY SSNO
 ... EMP-HOURLY-RATE
 ELSE
 DISPLAY SSNO EMP-HOURLY-RATE
 PERFORM PRINT-ERROR-MESSAGE
 NET-PAY = WS-NET-PAY - WS-DEDUC

Using a NEXT SENTENCE construction, the following S-COBOL code:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 PARA CALC-BENEFIT
 BEN-FIELD = ZERO
 IF PERM-PART-TIME
 PERFORM GROUP-A-CALC
 IF HRS-WORKED > 25
 BEN-FIELD =
 ... BEN-FIELD * 1.25
 ELSE-IF PART-TIME
 ELSE-IF FULL-TIME
 PERFORM GROUP-B-CALC
 EMPL-REC-BEN-FIELD =
 ... BEN-FIELD

Replaces the following COBOL code.

CALC-BENEFIT.
 MOVE ZERO TO BEN-FIELD.
 IF PERM-PART-TIME
 PERFORM GROUP-A-CALC
 IF HRS-WORKED > 25
 MULTIPLY BEN-FIELD BY 1.25
 ELSE
 NEXT SENTENCE
 ELSE
 IF PART-TIME
 NEXT SENTENCE
 ELSE
Reference

$IM- Data Communication Calls 299

rfpubb.book Page 299 Tuesday, February 19, 2002 9:56 AM
 IF FULL-TIME
 PERFORM GROUP-B-CALC
 ELSE
 NEXT SENTENCE.
 MOVE BEN-FIELD TO EMPL-REC-BEN-FIELD.

$IM- Data Communication Calls

Category: IMS Fast Path DC call (see Data Communication Calls)

Compatibility: IMS DC target for single-platform applications

Description: Perform Fast Path data communication calls.

Syntax: $IM-CHNG altview [destination]
$IM-CMD [PCBname] [msgarea]
$IM-GCMD [PCBname] [msgarea]
$IM-GN PCBname SSA1 [... SSA15]
$IM-GU PCBname SSA1 [... SSA15]
$IM-ISRT [PCBname]altview] SSA1 [... SSA15]
$IM-PURG [PCBname] [msgarea] [mod]

Parameters: altview Alternate view or IO PCB name.

destination Terminal destination; can be data name or literal
in an 8-byte field.

msgarea Area where IMS returns the message segment
being processed; APSAPS treats this area as the
first segment of a new message.

mod Data name or literal in an 8-byte field naming
the message output description.

pcbname Database view (maximum 20 characters); default
is IO-PCB.
Reference

300

rfpubb.book Page 300 Tuesday, February 19, 2002 9:56 AM
Examples: The following code:

$IM-CHNG ("ALT-IO", "YOUR-TERMINAL-NAME")

Generates in Working-Storage:

01 IM-DESTINATION-NAME PIC X(8).

Generates in the Procedure Division:

MOVE YOUR-TERMINAL-NAME
... TO IM-DESTINATION-NAME
CALL ’CBLTDLI’ USING
... IM-CHNG ALT-IO-PCB
... IM-DESTINATION-NAME
MOVE ALT-IO-STATUS
... TO IM-STATUS

The following code:

$IM-CHNG ("AOT-IO", "’YOURTERM’")

Generates in Working-Storage:

01 IM-DESTINATION-NAME PIC X(8).

Generates in the Procedure Division:

 MOVE ’YOURTERM’
 ... TO IM-DESTINATION-NAME
 CALL ’CBLTDLI’ USING
 ... IM-CHNG ALT-IO-PCB
 ... IM-DESTINATION-NAME
 MOVE ALT-IO-STATUS
 ... TO IM-STATUS

SSA Segment Search Argument, which triggers
COBOL MOVEs to or from the generated I/O area
IM-IO-AREA; default is IM-IO-AREA with a length
of 32,000 bytes. To override the length, set IM-
IO-AREA-LEN in your program or the DDISYMB
member.

Specify only one SSA per hierarchical level along
a path. These arguments generate 8-byte records
in Working-Storage to hold the corresponding
values.
Reference

$IM-FLD 301

rfpubb.book Page 301 Tuesday, February 19, 2002 9:56 AM
$IM-FLD

Category: IMS Fast Path database call (see Database Calls)

Compatibility: IMS DB target

Description: Access Main Storage Data Bases (only) at the field level, and query the
field contents and subsequently change the field value.

Syntax: $IM-FLD MSDBview fsaname [rootssa]

Parameters:

Comment: Refer to your IMS documentation for more information on $IM-FLD.

$IM-FSA

Category: IMS Fast Path database call (see Database Calls)

Compatibility: IMS DB target

Description: Build your own field search argument (FSA) to use with the IM-FLD call.

Syntax: $IM-FSA fsaname segment
... [field1[/picture/] operator operand1
... [field2[/picture/] operator operand2]
 .
 .
 .
 ... [field10[/picture/[operator operand10]

fsaname COBOL dataname for the generated field search
argument. See also $IM-FSA.

MSDBview Main Storage Data Base PCB.

rootssa Root segment search argument; if not specified,
APS retrieves the first segment in the MSDB.
Reference

302

rfpubb.book Page 302 Tuesday, February 19, 2002 9:56 AM
Parameters:

Comment: Refer to your IMS documentation for more information on $IM-FSA.

field Segment field name; can be 8-character IMS
field name or the corresponding COBOL record
name.

fsaname COBOL data name for the generated FSA;
references the FSA in $IM-FLD.

operand Value to test against field in a field verify, or
actual field value in a field change.

operator Valid operators for a field verify are:

E Verify that field and operand are equal.

G Verify that field is greater than operand.

H Verify that field is greater than or equal to
operand.

L Verify that field is less than operand.

M Verify that field is less than or equal to
operand.

N Verify that field is not equal to operand.

Valid operators for a field change are:

+ Add operand from field.

- Subtract operand from field.

+ Set field to value of operand

picture COBOL picture; if not specified, APS calculates
picture from field length and field type.

segment The segment referenced by the FSA; can be
eight-character IMS segment name or the
corresponding COBOL field name.
Reference

$IM-POS 303

rfpubb.book Page 303 Tuesday, February 19, 2002 9:56 AM
$IM-POS

Category: IMS Fast Path database call (see Database Calls)

Compatibility: IMS DB target

Description: Access Data Entry Data Bases (DEDBs) only. Retrieve the location of a
specific sequential dependent segment or the last inserted sequential
dependent segment, or determine the amount of unused space within
each DEDB area.

Syntax: $IM-POS DEDBview [SSA]

Parameters:

Comments: • After an IM-POS call successfully executes, information returns in
the field IM-POS-IO-AREA, which is defined:

01 IM-POS-IO-AREA
 05 IM-POS-LENGTH PIC S9(04) COMP.
 05 IM-POS-DATA-AREA-PONAME OCCURS 240.
 10 IM-POS-AREA-DDNAME PIC X(08).
 10 IM-POS-INFO
 15 IM-POS-CYCLS-COUNT PIC S9(8) COMP.
 15 IM-POS-VSAM-RBA PIC S9(8) COMP.
 10 IM-POS-UNUSED-SEQDEP-CIS PIC S9(8) COMP.
 10 IM-POS-UNUSED-INDEP-CIS PIC S9(8) COMP.

• Refer to your IMS documentation for more information on $IM-POS.

DEDBview Data Entry Data Base PCB

SSA Segment Search Argument, which triggers
COBOL MOVEs to or from the generated I/O area
IM-IO-AREA; default is IM-IO-AREA with a length
of 32,000 bytes. To override the length, set IM-
IO-AREA-LEN in your program or DDISYMB
member.

Specify only one SSA per hierarchical level along
a path. These arguments generate 8-byte records
in Working Storage to hold the corresponding
values.
Reference

304

rfpubb.book Page 304 Tuesday, February 19, 2002 9:56 AM
% INCLUDE

Category: APS Customizer statement (see your Customization Facility User’s Guide)

Description: Open, read, and process a user-defined rule, copybook, or other file in
an APS program.

Syntax: % INCLUDE ddname(filename)

Parameters:

Comments: • When including copybooks, use % INCLUDE when either of the
following conditions are true.

• You use a COBOL/2 compiler

• Your copybook contains an indexed table

• When including copybooks, use a COBOL COPY statement when
both of the following conditions are true.

• You use an OS/VS COBOL compiler

• Your copybook does not contain an indexed table

• In your program, you can code % INCLUDE in a file that is
INCLUDEd; you can have up to ten levels of nested INCLUDEs.

• Always use an SY* keyword (see SY* Keywords)--such as SYM1--with
an % INCLUDE to specify where to put the included file in the
program.

Examples: Include a rule at the top of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % INCLUDE USERMACS(MY-RULE)

Include a rule at the bottom of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYBT % INCLUDE USERMACS(MY-RULE)

ddname (filename) Ddname and file to include
Reference

INITIATE 305

rfpubb.book Page 305 Tuesday, February 19, 2002 9:56 AM
Include a copybook in Working-Storage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYWS % INCLUDE COPYLIB(MY-COPYBOOK)

Include a copybook in Linkage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK % INCLUDE COPYLIB(MY-COPYBOOK)

INITIATE

Category: Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Creating Reports with Report Writer.)

Compatibility: Batch environments

Description: Initialize all report counters and accumulators; set up control heading
and control footing items.

Syntax: INITIATE reportname1 [,reportname2] ...

Comments: • Define each report name in a RED statement.

• Initialization does not open the report file. Code a COBOL OPEN
OUTPUT statement before the INITIATE to do so.

• You must TERMINATE reportname1 before executing an INITIATE
for reportname2.

IO

Category: Program Painter and Specification Editor keyword (see Keywords:)

Compatibility: Batch environments
Reference

306

rfpubb.book Page 306 Tuesday, February 19, 2002 9:56 AM
Description: Generate the Input-Output Section File-Control paragraph.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IO filename ASSIGN [TO] systemname
 Applicable COBOL FILE-CONTROL clauses

Comments: • Do not code the SELECT verb in your syntax.

• Do not use ellipses to continue a FILE-CONTROL clause on
subsequent lines. Any keyword except /* (the comment keyword)
designates the end of the continuation.

• Code an IO keyword for each file.

• APS generates both the program INPUT-OUTPUT section header and
the FILE-CONTROL header.

ISPF Dialog Compatibility: with IMS DC, CICS

Compatibility: ISPF Dialog target

Description The following calls improve communication between APS/ISPF Dialog
and other DC targets.

NTRY You can list explicit data areas; this allows
flexibility in passing data areas between
programs.

TP-COMMAREA Not required to pass data areas between
programs, but is supported for upward
compatibility.

SEND Provided for upward compatibility; does not
invoke a program. Use LINK to invoke a
program that displays a screen.

TP-LINKAGE Provided for upward compatibility. This call is
necessary for APS/CICS to order the LINKAGE
section properly, but APS/ISPF Dialog lets you
locate user records in LINKAGE without coding
TP-LINKAGE.
Reference

Job Control Cards 307

rfpubb.book Page 307 Tuesday, February 19, 2002 9:56 AM
The PFKEY option allows PF key processing similar to APS/CICS and
APS/IMS with the Program-Controlled option when converting an
APS/CICS or APS/IMS application to ISPF Dialog.

Screens being converted from APS/CICS or APS/IMS must have a
command field, at least 4-bytes long, for users to enter ISPF commands
and to allow PF key processing to function. The command field must be.
Otherwise, data truncation errors result.

Do not use the APS Prototype Execution facility to execute your ISPF
Dialog programs; execute them using the Dialog Test facility provided
by ISPF.

Job Control Cards

Category: Application generation

Description: Create job cards to submit application/program generation batch jobs.

Procedure: To create up to five job cards--named J1 through J5-- with varying job
names, account information, classes, and other attributes, follow these
steps.

1 Access the Job Control Cards screen. To do so, from the APS Options
Menu enter option 6 in the Option field. Alternatively, from any APS
screen enter opt 6 in the Command or Option field. The Job Control
Cards screen displays.

2 Modify the cards as desired.

Joins

Category: Database access clauses

Compatibility: SQL target
Reference

308

rfpubb.book Page 308 Tuesday, February 19, 2002 9:56 AM
Description: In the same call, select rows or specific columns from more than one
table in the same call. Join tables together by using the DB-DECLARE,
DB-OBTAIN, and DB-PROCESS calls.

Syntax: With DB-DECLARE:

DB-DECLARE cursorname correlname1.copylibname-REC
... [DISTINCT]
... [column1 [... columnN]]|[NONE]
 .
 .
 .
... correlnameN.copylibname-REC
... [column1 [... columnN]]|[NONE]
 .
 .
 .
... [WHERE correlname.column1 oper [:]value|correlname.column2
... [AND|OR correlname.column3 oper
[:]value|correlname.column4
 .
 .
 .
... AND|OR correlname.columnN operator [:]value|correlnameN]]
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC]]]

With DB-OBTAIN:

DB-OBTAIN REC correlname1.copylibname-REC
... [DISTINCT]
... [column1 [... columnN]]|[NONE]
 .
 .
 .
... REC correlnameN.copylibname-REC
... [column1 [... columnN]]|[NONE]
... [WHERE correlname.column1 oper [:]value|correlname.column2
... [AND|OR correlname.column3 oper
[:]value|correlname.column4
 .
 .
 .
... AND|OR correlname.columnN oper [:]val|correlname.columnN]]
Reference

Joins 309

rfpubb.book Page 309 Tuesday, February 19, 2002 9:56 AM
With DB-PROCESS:

DB-PROCESS REC correlname1.copylibname-REC
... [DB-PROCESS-ID name]
... [DISTINCT]
... [column1 [... columnN]]|[NONE]
 .
 .
 .
... REC correlnameN.copylibname-REC
... [column1 [... columnN]]|[NONE]
... [WHERE correlname.column1 oper [:]value|correlname.column2
... [AND|OR correlname.column3 oper
[:]value|correlname.column4
 .
 .
... AND|OR correlname.columnN oper [:]val|correlname.columnN]]
... [DB-LOOP-MAX=number]
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]
 Controlled logic block

Parameters: See the applicable database call for keyword descriptions.

Comments: • Including a correlation name with each column is optional when
joining tables. Correlation names help insulate your code against
changes in table structures, and emphasize the exact columns you
are accessing. A call requires a correlation name if the column name
in a select list or WHERE clause appears in more than one of the
joined tables.

• Use the NONE keyword to qualify on the table, that is, reference the
table with a WHERE clause, but do not select columns.

• Join your tables together before coding WHERE. You can join any
number of tables. You can also join a table to itself.

• The WHERE clause refers to any column prefaced with the
correlation name assigned to its table. Be sure to enter the correct
correlation name--the SQL Generator cannot check it for you.

Examples: Select specific columns from tables D2MASTER and D2INVTRY; add
qualifications to the WHERE clause. Note that every column in the
WHERE clause is preceded by a correlation name.

DB-OBTAIN REC A.D2TAB-REC
... PM_PART_NO PM_UNITS PM_COLOR
Reference

310

rfpubb.book Page 310 Tuesday, February 19, 2002 9:56 AM
... REC B.D2INVEN-REC

... IN_PART_NO IN_QTY_ONHAND IN_DATE_LAST_ORDER

... WHERE A.PM_PART_NO = B.IN_PART_NO

... AND A.PM_COLOR = ’RED’

... AND B.IN_COLOR = ’RED’

Declare the cursor D2JOIN-CUR and include columns from tables
D2MASTER and D2INVTRY. Use a WHERE clause to select rows where

• Columns PM_PART_NO and IN_PART_NO from each table match

• Column IN_QTY_ONHAND from table D2INVTRY is greater than 100

Eliminate duplicate rows from the cursor set (rows with matching data
in every selected column are considered duplicates). Sort the cursor set
in ascending order by PM_PART_NO from table D2MASTER, then in
descending order by IN_QTY_ONHAND from table D2INVTRY.

DB-DECLARE D2JOIN-CUR A.D2TAB-REC DISTINCT
... PM_PART_NO PM_COLOR B.D2INVEN-REC
... IN_PART_NO IN_QTY_ONHAND
... WHERE A.PM_PART_NO = B.IN_PART_NO AND B.IN_QTY_ONHAND >
100
... ORDER A.PM_PART_NO B.IN_QTY_ONHAND DESC

Process the cursor D2MAST-ID. The cursor set includes columns from
tables D2MASTER and D2INVTRY. Use a WHERE clause to include rows in
the cursor set where:

• Columns PM_PART_NO and IN_PART_NO from each table match

• Column PM_PART_SHORT_DESC from table D2MASTER equals the
Working-Storage variable :WS-PART-SHORT-DESC

• IN_QTY_ONHAND from table D2INVTRY is greater than 100

Eliminate duplicate rows from the cursor set (rows with matching data
in columns PM_PART_NO, PM_COLOR, IN_PART_NO, and IN_COLOR are
considered duplicates). Sort cursor set in ascending order by D2MASTER
columns PM_PART_NO and PM_COLOR.

DB-PROCESS REC A.D2TAB-REC
... DB-PROCESS-ID D2MAST-ID
... DISTINCT
... PM_PART_NO PM_COLOR
... REC B.D2INVEN-REC
... IN_PART_NO IN_COLOR
... WHERE A.PM_PART_NO = B.IN_PART_NO
... AND A.PM_PART_SHORT_DESC =
Reference

Keywords 311

rfpubb.book Page 311 Tuesday, February 19, 2002 9:56 AM
... :WS-PART-SHORT-DESC

... AND B.IN_QTY_ONHAND > 100

... DB-LOOP-MAX=999

... ORDER A.PM_PART_NO ASC

... A.PM_COLOR ASC

Join a table to itself. Retrieve records where the IN_QTY_ONHAND
column is greater than 100 and retrieve records whose
IN_DATA_LAST_ORDER column matches these records.

DB-PROCESS REC A.D2INVEN-REC
... DB-PROCESS-ID D2MAST-ID
... IN_PART_NO
....IN_QTY_ONHAND
... IN_DATE_LAST_ORDER
... REC B.D2INVEN-REC
... IN_PART_NO (:WS-PART-NO)
... IN_QTY_ONHAND (:WS-QTY-ONHAND)
... WHERE A.IN_DATA_LAST_ORDER = B.IN_DATE_LAST_ORDER
... AND A.IN_QTY_ONHAND > 100

Keywords

Description: Program Painter/Specification Editor keywords designate program
Divisions and Sections. The keyword you choose determines the location
of your program code within the generated program.

Program Painter keywords also designate blocks of code within which
all other categories of APS structures are coded. Following any
keyword, you can enter

• Program code, including S-COBOL, COBOL, and COBOL/2 structures;
database and data communication calls

• Data structures

• Report Writer structures

• User-defined rules

Code keywords in the Program Painter for batch, report, or complex
online programs, or in Online Express.
Reference

312

rfpubb.book Page 312 Tuesday, February 19, 2002 9:56 AM
Keywords: The following lists the keywords and their logical placement in a
program.

Location Keyword Definition

Beginning of program SYM1, see SY* Keywords Define rule variables.

SYM2, see SY* Keywords Call user-defined rules after any rule
libraries named in Application View.

IDENTIFICATION DIVISION REM Create COBOL comments in the
Comments: Section. Not valid for
COBOL/2.

ENVIRONMENT DIVISION SPNM Create Special-Names paragraph

SYEN , see SY* Keywords Call user-defined rules in Special-
Names paragraph.

Input/Output Section SYIO, see SY* Keywords Call user-defined rules after any rule
libraries.

IO Code SELECT statement.

DATA DIVISION SYDD, see SY* Keywords Call user-defined rules at the
beginning of the Data Division.

File Section SYFD, seeSY* Keywords Call user-defined rules after any rule
libraries included.

FD
or
SD

Code File Description or Sort
Description statement.

Record description 01 Code record description in COBOL
format.

DS Specify name of data structure
defined in Data Structure Painter
containing record description.

REC Specify name of data structure
defined in Data Structure Painter
containing record description.
Structure must be coded in Data
Structure Painter format (see Data
Structures).

++, see Joins Specify PANVALET member name
containing record description.

WORKING-STORAGE SYWS, see SY* Keywords Call user-defined rules after any rule
libraries and data structures named
in Application View.
Reference

Keywords 313

rfpubb.book Page 313 Tuesday, February 19, 2002 9:56 AM
WS Designate Working-Storage section.

Data definitions 01 Code data structure in COBOL
format.

DS Specify name of data structure
defined in Data Structure Painter
containing data definition.

REC Specify name of data structure
defined in Data Structure Painter
containing data definition.
Structure must be coded in Data
Structure Painter format (see Data
Structures).

++ Joins Specify PANVALET member name
containing data definition.

SQL Designate DB2 table or cursor.

CA Redefine the TP-USERAREA of the
COMMAREA in CICS, IMS, and DLG
parent programs.

LINKAGE SECTION SYLT, see SY* Keywords Call user-defined rules after any rule
libraries and data structures named
in the Application View and
preceding any SYLK code.

SYLK, see SY* Keywords Call user-defined rules after any rule
libraries and data structures named
in the Application View.

LK Designate Linkage Section.

Data definitions 01 Code data structure in COBOL
format.

DS Specify name of data structure
defined in Data Structure Painter
containing data definition.

REC Specify name of data structure
defined in Data Structure Painter
containing data definition.
Structure must be coded in Data
Structure Painter format (see Data
Structures).

Location Keyword Definition
Reference

314

rfpubb.book Page 314 Tuesday, February 19, 2002 9:56 AM
++, see Joins Specify PANVALET member name
containing data definition.

SQL Designate DB2 table or cursor.

CA Redefine the TP-USERAREA of the
COMMAREA in CICS, IMS, and DLG
parent programs.

Report Section SYRP, see SY* Keywords Call user-defined rules after any rule
libraries.

RED Create a Report Section and specify
the report name.

MOCK Identify the report mock-up.

01 Specify the type of report line, such
as header, footer, detail.

PROCEDURE DIVISION NTRY
or
PROC

Designate the Procedure Division;
generate program skeleton and
program invocation logic.

OPT Suppress generation of program
invocation logic.

PARA and Paragraphs Designate S-COBOL or COBOL
paragraph.

STUB Name the global code to be
inserted.

Declaratives Section DECL Create a Declarative Section without
paragraphs; code declarative
statements.

DPAR Create a Declarative Section
paragraph; code declarative
paragraph statements.

Bottom of program SYBT, see SY* Keywords Call user-defined rules.

Anywhere in the program /*, see Comments Code comments. The /* keyword
does not end the action of the
current keyword; the next keyword
ends the current one.

FRFM Pass associated COBOL or S-COBOL
statements through the generator
without translation and move the
statements four columns to the left.

Location Keyword Definition
Reference

Keywords 315

rfpubb.book Page 315 Tuesday, February 19, 2002 9:56 AM
Syntax: Rules • Code keywords in the Program Painter for batch, report, or complex
online programs, or in Online Express.

• Important A keyword is active until the appearance of another
keyword, except for the comment keyword.

• You can code keywords in any sequence. Remember, keywords
designate blocks of logically related statement blocks and the
action of one keyword is terminated by the appearance of the next
keyword. The APS generators use these keywords to arrange the
program according to COBOL program requirements.

Pass-Through Parameters:

The following keywords provide pass-through support by letting you
code native calls and pass them through, without translation, to the
precompile process.

Example: The following examples include all APS keywords that you can enter in
the Program Painter when creating online or batch programs. They
illustrate

• The program locations where each keyword places the source code
after you generate the program through APS to produce an
executable COBOL or COBOL/2 program.

• The program locations at which APS places externally-defined
components associated with your program, such as user-defined
rules and data structures that you list on the Application View.

Online programs:

*SYM1 keyword places Customizer code here
*user rules from Appl View where Location=Top of program
*SYM2 keyword places Customizer code here
 IDENTIFICATION DIVISION.
 .
 .
 .
/ keyword places comments here (COBOL/2)
 REMARKS. REM keyword places comments here (COBOL)
 ENVIRONMENT DIVISION.
 .

IDCS and IDSS, see IDMS Code and pass through native IDMS DB calls.

SQL Code and pass through native SQL calls.

CICS Code and pass through native CICS calls.
Reference

316

rfpubb.book Page 316 Tuesday, February 19, 2002 9:56 AM
 .
 .
 SPECIAL-NAMES. SPNM keyword places code here
*SYEN keyword places Customizer code here
 DATA DIVISION.
*SYDD keyword places Customizer code here
 WORKING-STORAGE SECTION.
*user rules from Appl View where Location=Top of W-S
*data structures from from Appl View where Location=Top of W-S
*user rules from Appl View where Location=Working-Storage
*SYWS keyword places Customizer code here
*WS keyword, followed by any of the following six
* keywords that you enter on the next line
*01 keyword
*REC keyword
*DS keyword
*SQL keyword
*++ keyword
*FRFM keyword
*user rules from Appl View where Location=Bottom of W-S
*CA, CA05, CADS keywords place code here in CICS, DDS, IMS,
* DLG parent pgms
 LINKAGE SECTION.
*user rules from Appl View where Location=Top of Linkage
*data structures from Appl View where Location=Linkage Section
*user rules from Appl View where Location=Linkage Section
*SYLT keyword places Customizer code here
*SYLK keyword places Customizer code here
*LK keyword, followed by any of the following six
* keywords that you enter on the next line
*01 keyword
*DS keyword
*REC keyword
*SQL keyword
*++ keyword
*FRFM keyword
*CA, CA05, CADS keywords place code here in DLG child programs
*user rules from Appl View where Location=Bottom of Linkage
 PROCEDURE DIVISON. NTRY|PROC keyword generates this stmt
*OPT keyword places code here
 .
 .
 .
*PARA keyword places code here
 .
 .
 .
*STUB keyword places code here
Reference

Keywords 317

rfpubb.book Page 317 Tuesday, February 19, 2002 9:56 AM
 .
 .
 .
*user rules from Appl View where Location=Bottom of program
*SYBT keyword places Customizer code here
*End of program.

Batch programs:

*SYM1 keyword places Customizer code here
*user rules from Appl View where Location=Top of program
*SYM2 keyword places Customizer code here
 IDENTIFICATION DIVISION.
 .
 .
 .
/ keyword places comments here (COBOL/2)
 REMARKS. REM keyword places comments here (COBOL)
 ENVIRONMENT DIVISION.
 .
 .
 .
 SPECIAL-NAMES. SPNM keyword places code here
*SYEN keyword places Customizer code here
 INPUT-OUTPUT SECTION.
*user rules from Appl View where Location=Top of I/O Section
*SYIO keyword places Customizer code here
 FILE-CONTROL.
*IO keyword places code here
 .
 .
 .
 DATA DIVISION.
*SYDD keyword places Customizer code here
 FILE SECTION.
*user rules from Appl View where Location=Top of File Section
*FD keyword places code here
*SD keyword places code here
 WORKING-STORAGE SECTION.
*user rules from Appl View where Location=Top of W-S
*data structures from from Appl View where Location=Top of W-S
*user rules from Appl View where Location=Working-Storage
*SYWS keyword places Customizer code here
*WS keyword, followed by any of the following six
* keywords that you enter on the next line
*01 keyword
*REC keyword
Reference

318

rfpubb.book Page 318 Tuesday, February 19, 2002 9:56 AM
*DS keyword
*SQL keyword
*++ keyword
*FRFM keyword
*user rules from Appl View where Location=Bottom of W-S
 LINKAGE SECTION.
*user rules from Appl View where Location=Top of Linkage
*data structures from Appl View where Location=Linkage Section
*user rules from Appl View where Location=Linkage Section
*SYLT keyword places Customizer code here
*SYLK keyword places Customizer code here
*LK keyword, followed by any of the following six
* keywords that you enter on the next line
*01 keyword
*DS keyword
*REC keyword
*SQL keyword
*++ keyword
*FRFM keyword
*user rules from Appl View where Location=Bottom of Linkage
 PROCEDURE DIVISON. /*NTRY keyword generates this stmt
 PROCEDURE DIVISON USING. /*PROC keyword generates this stmt
 DECLARATIVES. /* DECL keyword generates this stmt
 DECLARATIVES SECTION. /* DPAR generates this stmt
*DPAR keyword places code here
 END DECLARATIVES.
*OPT keyword places code here
 .
 .
 .
*PARA keyword places code here
 .
 .
 .
*STUB keyword places code here
 .
 .
 .
*user rules from Appl View where Location=Bottom of program
*SYBT keyword places Customizer code here
*End of program.
Reference

Limits 319

rfpubb.book Page 319 Tuesday, February 19, 2002 9:56 AM
Limits
APS enforces the following size and programming limitations.

COBOL/2

Customization Facility

Online Express

Item Max

Characters in paragraph name 24

Item Max

Indents 50

Nested macros 139

Macro call arguments 1000

Nested INCLUDEs 10

DECLARE statements

Subscripts 300

• Length of subscript

• Tables

• Parts per table

• Length of a table part

12
200
1000
78

System limits

• Work files (beginning with WORK4)

• LRECL for INCLUDE lib

• LRECL for extended INCLUDE lib

8
80
140

Item Max

Database calls 50

Record name occurrences 20

Field qualification occurrences 70
Reference

320

rfpubb.book Page 320 Tuesday, February 19, 2002 9:56 AM
Painters

Report Writer

Scrolling for repeated blocks 1

Field mapping for repeated blocks 2

Subschema limits

• Files, databases, tables

• DB2 tables

• Records

• Qualifiable fields

130
99
160
990

Item Max

Item Max

Application Painter

• Associated screens

• Associated data structures

• Associated USERMACs

30
60
90

Screen Painter

• Number of fields

• ISPF only. Number 1-byte fields per screen

• ISPF only. Number of field attributes per screen

• Characters in field name

• Trancode construction fields

500
25
127
16
8

Secnario Painter: Fields per screen 400

Item Max

Report mock-up lines

• Coded in Copylib

• Coded in Report Painter

200
200

Number of reports for FD 15

Number SOURCE/SUM/ VALUE statements per program 300
Reference

LINK 321

rfpubb.book Page 321 Tuesday, February 19, 2002 9:56 AM
S-COBOL

LINK

Category: Data communication call (see Data Communication Calls)

Description: Transfer control and optionally send Commarea data from a CICS
program at one logical level to a CICS APS or non-APS application
subprogram; or, transfer control to an IMS or ISPF Dialog subprogram.

Syntax: CICS

Format 1, link to an APS program:

[TP-]LINK programname [errorpara]
... [DLIUIB pcbname [pcbname] ...]
... [userparm [userparm]...]
... [COMMAREA(dataarea) LENGTH(value)]|[NOCA]

Format 2, linking to a non-APS program:

[TP-]LINK programname(NONAPS)[errorpara]
... [COMMAREA(dataarea) LENGTH(value)]|[NOCA]

Item Max

Paragraph 600

Characters in paragraph name 24

Indentation levels per nested IF structure 14

Paragraph arguments per program 400

EVALUATE statement

• Conditional fields

• WHEN conditions

255
102

Symbol table entries (such as, paragraph names, file names,
record names, verbs,section names, keywords, arguments,
indexes, flags)

1801
Reference

322

rfpubb.book Page 322 Tuesday, February 19, 2002 9:56 AM
DDS

Format 1, CALL format:

[TP-]LINK programname [errorpara]
... [userparm [userparm]...]
... [COMMAREA]

IMS DC

[TP-]LINK subprogram [errorpara] [argument1 ... argument36]

DLG

Format 1, CALL format:

[TP-]LINK programname [errorpara]
... [userparm [userparm]...]
... [COMMAREA]

Format 2, SELECT format:

[TP-]LINK programname
... [errorpara]
... [options]

ISPF Prototyping

[TP-]LINK programname [errorpara]
... [COMMAREA(dataarea) LENGTH(value)]|[NOCA]

Parameters: argument Pass record area(s), such as a PCB. TP-
COMMAREA, TP-USERAREA, or *NOSPA, may
be an argument for conversational programs.

COMMAREA Pass the TP-COMMAREA, if the invoking
program is the main program. Pass DLG-
LINKAGE-COMMAREA, if the invoking program
is a called program, that is, one where &DLG-
COMMAREA-IN-LINKAGE = ’YES’. See also
"Comments" below.

COMMAREA (dataarea) Pass data area to a program instead of TP-
COMMAREA.

DLIUIB pcbname DLI User Interface Block and the Program
Control Block for the next program.
Reference

LINK 323

rfpubb.book Page 323 Tuesday, February 19, 2002 9:56 AM
Comments: CICS

• When linking to an APS program, TP-COMMAREA passes by default.
Alternately, you may pass another data area, or pass neither. Ensure
that the Commarea in the "linked-to" program is the same length
as the TP-COMMAREA or alternate data area you pass.

• When linking to a non-APS program, TP-USERAREA passes by
default. Alternately, you pass another data area, or pass neither.
Ensure that the Commarea in the non-APS program is the same
length as the TP-USERAREA or alternate data area you pass. (TP-
USERAREA gets its value from &TP-USER-LEN.)

Additionally, code the following before your NTRY statement:
% &TP-PROGRAM-INVOCATION = "NONAPS"

• Coding TERM in the subprogram returns control to the program
that issued the link call.

ISPF Dialog

• Including a TERM call in the invoked program returns control to the
program issuing the LINK.

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

LENGTH (value) Maximum length of data; can be a literal or
COBOL data name; define as S9(04)COMP.

(NONAPS) Program is not an APS program.

NOCA Do not pass COMMAREA.

options ISPF Dialog Management services SELECT PGM
options.

programname Program name; can be a literal, variable, or
combination, where the literal is moved to the
variable (indicated by a slash (/) as the first
character) by macro logic.

subprogram APS-painted subprogram that links the calling
program.

userparm Pass linkage data area(s). Code with TP-
LINKAGE, which names the 01-level user-
defined area in the Linkage Section.
Reference

324

rfpubb.book Page 324 Tuesday, February 19, 2002 9:56 AM
• Code userparms in the same order as those in the LINKAGE SECTION
and the NTRY statement in the linked to program.

• To receive TP-COMMAREA as a passed data area from a called
program, code the following before the NTRY keyword.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 % &DLG-COMMAREA-IN-LINKAGE = ’YES’

• LINK generates a COBOL CALL or ISPEXEC SELECT, depending on the
PROGRAM CONTROL TRANSFER option.

• The &APSPRE..CNTL member APDLGIN assigns the default value for
the PROGRAM CONTROL TRANSFER option. The variable &DLG-
PROGRAM-TRANSFER-OPTION can have the values CALL (default) or
SELECT.

• The PROGRAM CONTROL TRANSFER option affects the availability
of function pool variables between programs. Using CALL makes
the current function variable pool available to the linked-to
program; using SELECT does not.

• To override the PROGRAM CONTROL TRANSFER option:

a At the installation level, change the value in
&APSPRE..CNTL(APDLGIN).

b At the project group level, code the assignment statement in
&DSNPRE..CNTL(APSPROJ).

c At the application level, code the assignment statement in a
&DSNPRE..USERMACS member and include it for all application
programs.

d At the program level, code the assignment statement at the top
of the program.

• The PROGRAM CONTROL TRANSFER option lets you invoke the
LIBDEF service to define application-level libraries via the SELECT
value.

Examples: CICS

Link to PGM001. No PSB is active and no arguments pass.

LINK PGM001
Reference

LINK 325

rfpubb.book Page 325 Tuesday, February 19, 2002 9:56 AM
Link to the program stored in WS-PROGNAME. No PSB is active and no
arguments pass.

LINK /WS-PROGNAME

Move the value PGM003 to WS-PROGNAME and link to that program.

LINK PGM003/WS-PROGNAME

Link to PGM004; execute an error routine for an abnormal condition.
There is no active PSB and no arguments pass.

LINK PGM004 ERROR-PARA

Link to PGM005. Schedule a PSB and use a PCB named ABC-PCB for the
linked-to program. Omit the positional parameter errorpara .

LINK PGM005 * DLIUIB ABC-PCB

Link to PGM006 and pass a Linkage data area SCR6-RECORD so that
PGM006 can move data directly to screen fields.

LINK PGM006 * SCR6-RECORD

Link to PROG001, a non-APS program, passing TP-USERAREA only.

LINK PROG001(NONAPS)

Link to PROG002, a non-APS program, passing the data area WS-
COMMAREA.

LINK PROG002(NONAPS) * COMMAREA(WS-COMMAREA) LENGTH(100)

Link to PROG003, a non-APS program, without passing a COMMAREA.

LINK PROG003(NONAPS) * NOCA

IMS DC

The following examples show the CALL statements generated in the
program after linking to subprograms.

Coding LINK SUBPGM * ARG1 ARG2 ARG3
Yields CALL ’SUBPGM’ USING TP-COMMAREA ARG1 ARG2 ARG3

Coding LINK SUBPGM * *NOSPA ARG1 ARG2 ARG3
Yields CALL ’SUBPGM’ USING ARG1 ARG2 ARG3

Coding LINK SUBPGM * ARG1 TP-USERAREA ARG2 ARG3
Yields CALL ’SUBPGM’ USING ARG1 TP-USERAREA ARG2 ARG3
Reference

326

rfpubb.book Page 326 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog

Invoke PGM001 as a new program function. The SELECT service option
NEWPOOL creates a new shared variable pool. The SELECT option is in
effect.

LINK PGM001 * NEWPOOL

Invoke PGM001 as a new program function. The SELECT service option
PARM passes data to PGM001 via LINKAGE SECTION. To pass variable
data, VDEFINE a dialog variable. The SELECT option is in effect.

DLG-VDEFINE 01 WS-EMPL-NBR PIC X(05) AS EMPNBR
MOVE EMPL-NBR TO WS-EMPL-NBR
LINK PGM001 * PARM(’&EMPNBR’)
DLG-VDELETE EMPNBR

Link to the program in WS-PROGNAME. The CALL option is in effect.

MOVE ’PGM001’ TO WS-PROGRAM
LINK /WS-PROGNAME

Link to PGM006 and pass Linkage data area SCR6-RECORD so that
PGM006 can move data directly to screen fields. The CALL option is in
effect.

LINK PGM006 * SCR6-RECORD

LK

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Create or include data structures in the Linkage Section.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 LK
 kywd associated data structure

Parameter kywd Associated data structure keywords are: 01, DS,
REC, See SQL, ++, or 01.
Reference

Macro/Program Cross Reference (MC01) 327

rfpubb.book Page 327 Tuesday, February 19, 2002 9:56 AM
Example: Code Working-Storage and Linkage data structures using section
keywords.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IO INPUT-FILE ASSIGN TO UT-S-INPUT
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 01 INPUT-REC PIC X(80).
 WS
 REC WS-INPUT-REC.
 WS-IN-PART-NO N8
 WS-IN-DESC X50
 WS-IN-BASE-PRICE N6V2
 ++ PANWSREC
 LK
 REC LK-INPUT-REC
 LK-IN-PART-NO N8
 LK-IN-DESC X50
 LK-IN-BASE-PRICE N6V2
 01 LK-OUT-REC.
 DS05 LK-OUT-REC

Macro/Program Cross Reference (MC01)

Category: APS-generated report (see Application Reports)

Description: The Macro/Program Cross Reference Report lists the macros used in one
or more applications, along with all of the programs that invoke the
macros, and the macro libraries that the programs reside in. Use the
report to find all the programs and applications that use a given macro.

The cross-referenced macros appear alphabetically within an
application on the report. If you report on all applications, the
applications display alphabetically in the report. Specific macro libraries
are listed as follows.

• Macro libraries specified in the Application Painter display in the
macrolib indicator column.

• Global macro libraries display ***ALL*** in the type indicator
column.
Reference

328

rfpubb.book Page 328 Tuesday, February 19, 2002 9:56 AM
• Stubs and batch programs display ***STUB*** in the type indicator
column.

After each application, summary statistics provide the:

• Total number of macros and libraries reported

• Number of programs with macro calls

• Number of common macro libraries

• Total number of programs in that application

Comment: Produce the Macro/Program Cross Reference Report from the
Documentation Facility.

Example:

REPORT CODE: MC01 APS APPLICATION PAINTER PAGE 1
 MACRO/PROGRAM CROSS REFERENCE 01/17/92 08:26
 MKTAPS.MKT2

 SELECTION CRITERIA: TDDEMO
 APPLICATION: TDDEMO

**
 MACROLIB. PROGRAM / STUB TYPE NO.OF TIMES
NAME OF MACRO / MACROLIB: IND. USING MACRO IND MACRO CALLED
--
CLEAR TDCM 1
 TDOM 1
 TDPM 1

DB-ERASE TDCM 1
 TDOM 1
 TDPM 1
.
.
.
PX-CA-COMPUTE-LEN TDOM 1

.

.

.
TP-ATTR TDOM 13
 TDOT 1
TP-PERFORM TDCM 36
Reference

MFS Function Keys 329

rfpubb.book Page 329 Tuesday, February 19, 2002 9:56 AM
 TDCS 27
 TDME 3
 TDOJ 27
 TDOM 80
 TDOT 16
 TDOU 9
 TDPF 7
 TDPL 27
 TDPM 36
.
.
.
XCTL TDCM 1
 TDCS 1
 TDME 7
 TDOJ 1
 TDOM 1
 TDOT 1
 TDOU 1
 TDPF 1
 TDPL 1
 TDPM 1
TOTAL MACROS & LIBRARIES REPORTED 14
NO. OF PGMS. WITH MACRO CALL IN CODE 10
NO. OF COMMON MACROLIBS IN APPLN. 0
TOTAL NO. OF PROGRAMS IN APPLN. 10

MFS Function Keys

Compatibility: IMS DC target

Category: Screen Painter feature

Description: Assign trancodes, operator logical paging, other IMS commands, and
nulls or spaces to the MFS PF key fields.

Procedure: To define MFS function key values, follow these steps.

1 Type *pf in the Optional Fld Name field on the Screen Generation
Parameters screen.
Reference

330

rfpubb.book Page 330 Tuesday, February 19, 2002 9:56 AM
2 From the Screen Generation Parameters screen, enter pf or pfk in
the Command field. The MFS Function Keys screen displays.

3 Enter *null or *space in the PFkey Global Default field to set a
global PF key default.

4 Enter the PF key functions.

5 To check for errors in the function key values you entered, press
Enter. A message displays for any value in error.

6 To save your key assignments and exit this screen, press F3. To exit
without saving your key assignments, enter cancel in the Command
field.

Example:

MFS Trancode Construction

Compatibility: IMS DC target

Category: Screen Painter feature

Description: Construct trancodes of up to eight parts by concatenating screen fields,
literals, and PF keys.

Procedure: To create a trancode, follow these steps.

1 Enter *tc in the Optional Fld Name field on the Screen Generation
Parameters screen.
Reference

MFS Trancode Construction 331

rfpubb.book Page 331 Tuesday, February 19, 2002 9:56 AM
2 From the Screen Generation Parameters screen, enter tc or tran in
the Command field. The MFS Trancode Construction screen displays.

3 Complete the screen fields as follows.

4 To check for errors in the trancode values you entered, press Enter.
A message displays for any value in error.

5 To save your trancode and exit this screen, press F3. To exit without
saving your key assignments, enter cancel in the Command field.

Example: Define a trancode definition, consisting of a function key (values
specified in the MFS Function Keys example on Example:), and the fields
OPTION-PREFIX and NEXT-OPTION. If the end user enters no values in
these two fields, the literal UPDTMENU transmits in the MID.

Field Description and Values

Field Name Enter name of field or *pf. If you enter *pf, specify
PF key values on the MFS Function Keys screen. If
you specify a field, APS ignores all field attributes,
including an initial value entered in the Value
field. You must enter the initial value in the
Default Literal field.

Default
Literal

Enter any literal. If you supply a literal on the same
line as a field name or *PFKEY, APS transmits the
literal in the MID when no value is entered for the
field or when the PF key is not invoked.

Fill Enter the MID fill character for the associated field
name or *PFKEY.

S Default. Space

N Null
Reference

332

rfpubb.book Page 332 Tuesday, February 19, 2002 9:56 AM
MID MOD Reorder

Compatibility: IMS DC target

Category: Screen Painter feature

Description: Change the MID/MOD order in which the I/O fields from your screen
appear in the generated Working-Storage. Do so to meet any site
standards that require transmittal of screen data in a particular order.

Procedure To change the order in which your I/O fields appear in the generated
Working-Storage, follow these steps.

1 From the Screen Generation Parameters screen, enter mm or mid-
mod in the Command field. The MID MOD Reorder screen displays,
with I/O fields listed in the order they appear on the application
screen, numbered by increments of ten.

2 Reorder fields as follows.

• Type new sequence numbers, followed by at least one space,
over the existing ones. A trancode field is always the first field,
regardless of its sequence in the painted screen or on this
screen.

• Enter reorder in the Command field. Reordering fields in a
repeated record block reorders the entire block.

3 To reset the sequence of fields to the sequence on your screen,
enter reset in the Command field.

4 To save your new sequence and exit this screen, press F3. To exit
without saving your sequence, enter cancel in the Command field.
Any fields you add later to your screen are placed at the end of the
modified MID MOD sequence list.

Example: Reorder the fields in the first screen. The second screen sequences ERR-
MSG after PAGING in the Working-Storage Section. The third screen
shows the result.
Reference

MOCK 333

rfpubb.book Page 333 Tuesday, February 19, 2002 9:56 AM
MOCK

Category: Program Painter and Specification Editor keyword (see Keywords)

Compatibility: Batch environments

Description: Specify the report mock-up name in your report program.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 MOCK mockupname

Comment: Mockupname is the name entered in the Reports field associated with
your program in the Application Painter and painted in the Report
Painter.
Reference

334

rfpubb.book Page 334 Tuesday, February 19, 2002 9:56 AM
Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 RED STOCK-REPORT
 CONTROLS ARE FINAL WS-LOCATION-CODE
 PAGE LIMIT IS 50
 FIRST DETAIL 10
 LAST DETAIL 40
 FOOTING 47.
 MOCK STCKPRT
 01 TYPE IS REPORT HEADING NEXT GROUP
 NEXT PAGE LINE 20.
 MOCKUP LINES 1 THRU 6
 SOURCE WS-DATE

MOCKUP LINES

Category: Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Create Reports with Report Writer.)

Compatibility: Batch environments

Description: In your report program, specify the line numbers in the report mock-up
that correspond to the detail lines, headers, and footers.

Syntax: MOCKUP|M LINE|LINES linenumber1 [THRU linenumberN]

Comments: • Refer to all extra lines in a report mock-up with a MOCKUP
statement.

• The maximum number of report mock-up lines is 200.

Example: Specify that lines 1 through 8 in the report mock-up contain the
heading text.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS REPORT HEADING LINE 20 NEXT GROUP
 NEXT PAGE.
 MOCKUP LINES 1 THRU 8
Reference

Mock-Up Report (RP01) 335

rfpubb.book Page 335 Tuesday, February 19, 2002 9:56 AM
Mock-Up Report (RP01)

Category: APS-generated report (see Application Reports)

Description: The Mock-Up Report contains a representation of a report mock-up as
painted in the Report Painter. When produced from the Report
Generator, the report includes line numbers. This report documents a
key aspect of an application for end users to review or for developers to
use when maintaining or enhancing the application.

Comments: • Produce the Mock-Up Report from the Report Generator, Painter
Menu, or Application Painter.

• You can set or change generation options for the report. To do so,
access the Report Options screen in one of the following ways.

• From the Report Generator screen, enter 4 in the Option field.

• From any APS screen, enter opt in the Command or Options
field. From the APS Options Menu that displays, enter option 4
in the Options field.

The Report Options screen displays. Specify y(es) to print line
numbers or n(o) if you do not want to print them.

Example:

REPORT CODE: REPT APS ENTITY REPORT FACILITY PAGE 1
 CLSAPS.CLS2 01/18/92 15:01
REPORT CRITERIA: 2
 ALL MEMBERS OF LIBRARY TYPE : RP

 LIBRARY ENTITY
 TYPE NAME STATUS REMARKS

 RP COSTRPT REPORTED
 RP MERPT REPORTED

REPORT CODE: RP01 APS APPLICATION PAINTER PAGE 1
 APPLICATION DEFINITION REPORT 01/18/92 15:01
 CLSAPS.CLS2

SELECTION CRITERIA: COSTRPT

REPORT: COSTRPT CREATED: 07/27/90
AUTHOR: CLSONE UPDATED: 07/27/90

 USER MANUFACTURING COMPANY
 EXPENDITURES REPORT AS OF XXXXXXXX
Reference

336

rfpubb.book Page 336 Tuesday, February 19, 2002 9:56 AM
 NO CUMULATIVE
MONTH DAY DEPT PURCHASES ITEM COST COST
XXXXXXXXX EXPENDITURES
XXXXXXXXX XX XXX 2Z9 X ZZ9.99
TOTAL COSTS FOR W/E XXXXXXXXX XX Z,ZZ9.88 ZZ,ZZ9.99
 TOTAL COSTS FOR XXXXXXXXX ZZ,ZZ9.99
TOTAL EXPENDITURES FOR YEAR-TO-DATE ZZZ,ZZ9.99

PAGE ZZZ9
END OF REPORT

REPORT CODE:RP01 APS APPLICATION PAINTER PAGE 1
 APPLICATION DEFINITION REPORT 01/18/92 15:01
 CLSAPS.CLS2

 SELECTION CRITERIA: MERPT

 REPORT: MERPT CREATED: 08/24/90
 AUTHOR: CLSTRA UPDATED: 08/24/90

 USER MANUFACTURING COMPANY
 EXPENDITURES REPORT AS OF XXXXXXXX

 NO CUMULATIVE
MONTH DAY DEPT PURCHASES ITEM COST COST
XXXXXXXX EXPENDITURES
XXXXXXXX XX XXX 2Z9 X ZZ9.99
TOTAL COSTS FOR W/E XXXXXXXX XX Z,ZZ9.99 ZZ,ZZ9.99
TOTAL COSTS FOR XXXXXXXX ZZ,ZZ9.99
TOTAL EXPENDITURES FOR YEAR-TO-DATE ZZZ,ZZ9.99

PAGE ZZZ9
END OF REPORT

Modified Data Tags, CICS Data Transmission

Description: Under normal screen processing, the MDT (Modified Data Tag) attribute
must be turned on for each field when you use Field Edits with an
updateable program. This causes the end user workstation or terminal
to always send all field modified or unmodified data to the program.

Transmission of data is more efficient if MDT is turned off, but then only
the data modified by the end user is returned to the program, and the
unmodified data is lost, which is of course, undesirable. To turn off the
MDT tag and not lose unmodified data, follow these steps.

1 Turn off the MDT for any number of updateable I/O fields--whether
they have field edits or not.

2 In the APS CNTL file APCICSIN, set the &CIC-MDTOFF-PROCESSING
flag to yes. This flag generates the processing logic to handle MDTs
Reference

MSG-SW 337

rfpubb.book Page 337 Tuesday, February 19, 2002 9:56 AM
that are turned off. APS generates the logic for all screens listed in
the SCRNLIST call or the screen specified in the NTRY call.

Comments: • During processing, APS returns the modified data to the program,
and retains the unmodified data in temporary storage and returns it
to the program after the modified data is returned.

• A macro, also in APCICSIN, named $TP-MDTOFF-BUILD-QUEUENAME
builds the temporary storage queue name used to store the screen
records. You can change this macro to build a name that conforms
to your site standards.

• Also contained in APCICSIN are the following error processing
macros that execute when there is an error in reading, writing, or
deleting your screen records in temporary storage.

$TP-MDTOFF-READQ-TS-ERROR
$TP-MDTOFF-WRITEQ-TS-ERROR
$TP-MDTOFF-DELETEQ-TS-ERROR

As shipped, these macros generate a CICS-SEND-TEXT call to display
appropriate error messages, and a TERM to terminate the program.
You can change these macros to conform to your shop standards.

MSG-SW

Category: Data communication call (see Data Communication Calls)

Compatibility: IMS DC and ISPF Prototyping targets

Description: Send a data or a message to the specified program trancode or
subprogram.

Syntax: IMS DC

[TP-]MSG-SW trancode|programname|dataname [errorpara]
... [screenname|recordname]
... [keyword[+keyword]...]
Reference

338

rfpubb.book Page 338 Tuesday, February 19, 2002 9:56 AM
ISPF Prototyping

[TP-]MSG-SW trancode|programname|dataname [errorpara]
... [screenname]

Parameters: dataname Name of data element.

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

keyword Valid keywords are:

NOALTRESP Default. Use an IO PCB, not an
alternate response IO PCB to
send a response to the terminal.

ALTRESP Use an alternate response IO
PCB to send aresponse to the
terminal.

NOCONT Default. Control returns to top
of the Procedure Division of the
sending program.

CONT Control returns to the
instruction following call
execution, that is, the next
statement after the MSG-SW.

CONTCOND TP-CONTCOND determines if
control passes to the next
instruction or returns to the top
of the program.

NOEXPRESS Default. Do not send a message
for abnormal program
termination.

EXPRESS Send a message at program
termination.

NOENDCONV Default. Do not blank out the
TRANCODE in the SPA.

ENDCONV Blank out the TRANCODE in the
SPA.
Reference

MSG-SW 339

rfpubb.book Page 339 Tuesday, February 19, 2002 9:56 AM
Comments: • Allow the program to send invalid or empty screen values by
specifying NORETRY with the NTRY keyword; use generated flags to
test whether input data is valid.

• Use the PURG and NOPURG keywords to control how APS sends
messages. When issuing multiple inserts to the same destination
before reaching a SYNC point, IMS sends the messages as one multi-
segmented message. If you send the message via an Express PCB,
APS issues a PURG after the insert and sends it as one single-
segmented message.

• Omitting screenname or recordname sends a message with a
transaction code to the new program.

• Making both the sending and receiving program conversational
passes data in the Commarea (SPA) to the new program (see TP-
COMMAREA).

• MSG-SW lets a program send a message to itself. You might use this
feature to break a long process into several small pieces.

SCREEN Default. Input is an APS-painted
screen. Multisegment screens
are not supported.

RECORD Input is recordname. See also
"Comments" below.

NOPURG Send all messages to the same
destination as one multi-
segmented message. Default
with NOEXPRESS keyword.

PURG After inserting the message,
send it as one single-segmented
message. Default with EXPRESS
keyword.

recordname User-defined I/O area in Working-Storage. See
also "Comments" below.

screenname Screen name; must be literal (maximum 8
characters).

trancode|
programname

Literal name of destination program or
transaction code identifying receiving program;
can be a literal (maximum 8 characters) or a
COBOL data name (minimum 9 characters).
Reference

340

rfpubb.book Page 340 Tuesday, February 19, 2002 9:56 AM
• When coding RECORD and recordname in conversational programs,
and recordname differs from your application trancode, code
SYM1 % &recordname-TRANCODE = "trancode"

• Remember to define an alternate IO PCB in the program
specification block (PSB) and specify MODIFY=YES (see Program
Control Blocks, IO).

Examples: Send messages to another program; perform error routine when error
occurs.

MSG-SW trancode PROCESS-ERRORS

Send messages and pass a screen record. Note that the asterisk (*)
replaces the positional parameter errorpara.

MSG-SW trancode * SCRA

Send messages and pass a COBOL record.

MSG-SW trancode * WS-CUSTOMER RECORD

NTRY

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Generate a program template that fully defines all parts of your
program except for the procedural code that you supply.

NTRY generates a program template that defines:

• The Identification Division, based on your Application Painter
specifications

• The Environment Division, based on your Application Painter
specifications

• The Data Division, including the following Working-Storage and
Linkage Section structures:

• Your database record or file definitions, based on your imported
subschema
Reference

NTRY 341

rfpubb.book Page 341 Tuesday, February 19, 2002 9:56 AM
• Your screen field data structures, based on your Screen Painter
specifications

• CICS EIBRCODE and DFHCOMMAREA structures

• Your IMS PCB mask, including I/O and database PCBs, based on
your imported subschema

• An APS data structure for passing data among programs, known
as a Commarea; the Commarea appears in either Working-
Storage or the Linkage Section, depending on your DC target

• PF key definitions, based on your specified DC target

• Flags required by APS

• Portions of the Procedure Division, including:

• A housekeeping routine, to initialize Working-Storage fields,
flags, and counters

• Program invocation logic, to initialize your program when it is
invoked by a transaction ID, a screen, or another program,
based on your specified DC target

• Logic to send the program window or screen to the end user’s
monitor

In CICS programs, NTRY also generates code to:

• Obtain addressability to Linkage Section areas passed from other
programs via addresses in the program Commarea.

• Receive correct map if transaction is screen-invoked.

In ISPF Dialog programs, NTRY also generates code to display screens.

In IMS programs, NTRY also generates code to:

• Specify input as a screen or a user-defined I/O area in Working-
Storage.

• Generate code to receive the specified screen.

• Read SPA if the program is conversational.
Reference

342

rfpubb.book Page 342 Tuesday, February 19, 2002 9:56 AM
Syntax: CICS

NTRY|ENTR screenname(mapsetname)]
... [errorpara]
... [RETRY|NORETRY]

IMS DC

Format 1:

NTRY|ENTR

Format 2:

NTRY|ENTR screenname
... [errorpara]
... [RETRY|NORETRY]

Format 3:

NTRY|ENTR recordname
... [errorpara]
... [RETRY|NORETRY]
... *RECORD

ISPF Dialog

NTRY|ENTR screenname
... [errorpara]
... [RETRY|NORETRY]
... [CANCEL|RETURN]
... [dataareas]

ISPF Prototyping

NTRY|ENTR screenname
... [RETRY|NORETRY]
... [CANCEL|RETURN]
... [dataareas]

Parameters: CANCEL Default. Generate CONTROL ERRORS CANCEL
(return control to ISPF when dialog error of
return code 12 or higher).

dataareas Generate the PROCEDURE DIVISION USING
statement. List user-defined data areas only, not
records defined by TP-COMMAREA, TP-LINKAGE,
and SCRNLIST, which automatically generate
other data areas. APS generates data areas in the
following order.
Reference

NTRY 343

rfpubb.book Page 343 Tuesday, February 19, 2002 9:56 AM
Data areas listed with NTRY.

• TP-COMMAREA record

• TP-LINKAGE records

• SCRNLIST screen records

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

mapsetname Mapset containing the screen(s) the program
receives; must be a literal (maximum 7
characters). See also Comments: for CICS below.

NORETRY Accept invalid data in screen fields with assigned
edits. See also Comments: below.

*RECORD Code when using recordname instead of
screenname as input.

recordname User-defined I/O area in Working-Storage, long
enough for any input message that can be
received. The area receives the data returned
from the GU to the program control block.

For a conversational program, the program reads
the ASPA with a GU, and the input message with
a GN. It does not expect a multisegment input
message. PF keys are not generated; you must
code them.

RETRY Default. Accept only valid data in screen fields
with assigned edits; otherwise, return screen to
the terminal user for correction. See also
"Comments" below.

RETURN Generate CONTROL ERRORS RETURN to return
control to program when dialog error occurs.
See also Comments: below.

screenname Screen name; value must be literal (maximum 8
characters).
Reference

344

rfpubb.book Page 344 Tuesday, February 19, 2002 9:56 AM
Comments: Code an NTRY, PROC, or OPT statement for each program.

• To generate a batch program template with a PROCEDURE
DIVISION USING statement, code PROC.

• The generated $TP-ENTRY generates a program template to send
the appropriate window depending on the program invocation
mode. To suppress the window and program invocation logic from
your program template, code OPT PROG (OPT).

CICS

• Normally, if received data fails to pass editing, APS returns the
screen, highlighting errors and displaying error messages in the
SYSMSG field. Application logic executes after the received data
passes editing.

It is possible, however, to accept screens with data that does not
pass editing. When NORETRY is coded, the application logic
executes regardless. A set of runtime flags allow application logic to
determine the success or failure of editing.

APS-EDITS-PASSED 88-level flag set to true when data
for all edited fields is valid. Code IF
APS-EDITS-PASSED to test whether
the edit is OK.

screenname-fieldname-FLAG Indicator flag set to spaces when
data for a specified field valid. Code
IF screenname-fieldname-FLAG =
SPACES to test whether the data is
valid.

screenname-fieldname-INPT APS-generated data field; contains
data exactly as entered if the field
failed to pass editing.

APS-MSG-IO-ERROR Applies to IMS DC only. 88-level flag
set to true when a program sends a
user-defined I/O error message. Code
IF APS-MSG-IO-ERROR to test if
message sent.

APS-MSG-EDIT-ERROR 88-level flag set to true when a
program sends a user-defined edit
error message. Code IF APS-MSG-
EDIT-ERROR to test if the message is
sent.
Reference

NTRY 345

rfpubb.book Page 345 Tuesday, February 19, 2002 9:56 AM
• When mapsetname is not specified, APS looks for it in the Screen
Generation Parameters screen information; otherwise, APS
generates a default mapset name, as follows.

• You can write macros, using the following names, to customize
NTRY processing.

IMS DC

• Normally if received data fails to pass editing, APS returns the
screen, highlighting errors and displaying error messages in the
SYSMSG field. Application logic executes after the received data
passes editing.

It is possible, however, to accept screens with data that does not
pass editing. When NORETRY is coded, the application logic
executes regardless. A set of runtime flags allow application logic to
determine the success or failure of editing.

Screen Name Length Generated Mapset Name

4 characters screennameSET

5 characters screenname$

6 characters screenname$

7 characters Last character of screenname
changes to $

8 characters Truncates eighth character of
screenname; seventh character
changes to $

User Macro Name Where Included

TP-ENTRY-EXIT-1 Bottom of APS-HOUSEKEEPING-PARA

TP-ENTRY-EXIT-2 After APS-HOUSEKEEPING-PARA

APS-EDITS-PASSED 88-level flag set to true when data
for all edited fields is valid. Code IF
APS-EDITS-PASSED to test whether
the edit is OK.

screenname-fieldname-FLAG Indicator flag set to spaces when
data for a specified field valid. Code
IF screenname-fieldname-FLAG =
SPACES to test whether the data is
valid.
Reference

346

rfpubb.book Page 346 Tuesday, February 19, 2002 9:56 AM
• A serially reusable IMS online program processes multiple input
messages in a single execution. After the program processes one
input message and sends a response, it reads and processes another
input message and terminates when there are no more input
messages.

The APS/IMS DC Generator creates programs consistent with this
practice. Termination DC calls (SEND, MSG-SW, TERM) do not
terminate a program, but instead return control to NTRY-generated
logic to receive a new input message.

Because a program may process multiple messages in a single
execution, you program should perform any Working-Storage
initialization in the Procedure Division, rather than in Working-
Storage using the VALUE clause. You can still use the VALUE clause
to initialize Working-Storage constants that are never changed
during execution.

• You can write macros, using the following names, to customize
NTRY processing.

screenname-fieldname-INPT APS-generated data field; contains
data exactly as entered if the field
failed to pass editing.

APS-MSG-IO-ERROR Applies to IMS DC only. 88-level flag
set to true when a program sends a
user-defined I/O error message. Code
IF APS-MSG-IO-ERROR to test if
message sent.

APS-MSG-EDIT-ERROR 88-level flag set to true when a
program sends a user-defined edit
error message. Code IF APS-MSG-
EDIT-ERROR to test whether if
message sent.

User Macro Name Where Included

TP-ENTRY-EXIT-1 Bottom of APS-HOUSEKEEPING-
PARA

TP-ENTRY-EXIT-2 After APS-HOUSEKEEPING-PARA

TP-ENTRY-EXIT-2S After screen message is sent

TP-ENTRY-EXIT-3 At end of $TP-ENTRY macro
Reference

NTRY 347

rfpubb.book Page 347 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog

• Normally if received data fails to pass editing, APS returns the
screen, highlighting errors and displaying error messages in the
SYSMSG field. Application logic executes after the received data
passes editing.

It is possible, however, to accept screens with data that does not
pass editing. When NORETRY is coded, the application logic
executes regardless. A set of runtime flags allow application logic to
determine the success or failure of editing.

• Code logic in errorpara to process all ISPEXEC display service return
codes with a value of 12 or higher.

• Provide errorpara to handle dialog errors when coding RETURN.

APS-EDITS-PASSED 88-level flag set to true when data
for all edited fields is valid. Code IF
APS-EDITS-PASSED to test whether
the edit is OK.

screenname-fieldname-FLAG Indicator flag set to spaces when
data for a specified field valid. Code
IF screenname-fieldname-FLAG =
SPACES to test whether the data is
valid.

screenname-fieldname-INPT APS-generated data field; contains
data exactly as entered if the field
failed to pass editing.

APS-MSG-IO-ERROR Applies to IMS DC only. 88-level flag
set to true when a program sends a
user-defined I/O error message.
Code IF APS-MSG-IO-ERROR to test if
message sent.

APS-MSG-EDIT-ERROR 88-level flag set to true when a
program sends a user-defined edit
error message. Code IF APS-MSG-
EDIT-ERROR to test whether if
message sent.
Reference

348

rfpubb.book Page 348 Tuesday, February 19, 2002 9:56 AM
Examples: Generate code to receive screen SCRA when the program is screen-
invoked. Specify that the program can receive a screen that contains
invalid data. Omit the error paragraph.

-KYWD- 12--*--20---*----30----*---40---*----50---*----60
 NTRY SCRA * NORETRY

Receive multiple screens and include an error routine. Note that when
you use SCRNLIST, you do not specify any screens in the NTRY statement.

-KYWD- 12--*--20---*----30----*---40---*----50---*----60
 SYM1 SCRNLIST C1ORDR C2ORDR C3ORDR
 NTRY * PROCESS-ERRORS

CICS

Generate code to receive screen CUSTORDR in mapset CUSTOR$ for a
screen-invoked program. Perform MAP-ERROR-PARA when an
exceptional condition occurs on the RECEIVE MAP.

-KYWD- 12--*--20---*----30----*---40---*----50---*----60
 NTRY CUSTODR(CUSTOR$) MAP-ERROR-PARA

IMS DC

Receive a message into a COBOL record I/O area.

-KYWD- 12--*--20---*----30----*---40---*----50---*----60
 NTRY WS-CUSTOMER * *RECORD

DLG

Generate code to display screen SCRA. Perform PROCESS-ISPF-ERRORS
when return codes from services are greater than 12. Generate
CONTROL ERRORS RETURN code so the program can control all error
processing.

-KYWD- 12--*--20---*----30----*---40---*----50---*----60
 NTRY SCRA PROCESS-ISPF-ERRORS RETURN

ISPF Dialog

Generate code to display screen SCRA. Perform PROCESS-ISPF-ERRORS
when return codes from services are greater than 12. Generate
CONTROL ERRORS RETURN code so the program can control all error
processing.

-KYWD- 12--*--20---*----30----*---40---*----50---*----60
 NTRY SCRA PROCESS-ISPF-ERRORS RETURN
Reference

NULL Indicator Field 349

rfpubb.book Page 349 Tuesday, February 19, 2002 9:56 AM
NULL Indicator Field

Compatibility: SQL target

Description: Use a null indicator variable to indicate whether the associated host
variable has been assigned a null value.

Syntax: APS/SQL generates a null indicator variable in Working-Storage, defined
as follows.

01 IND-cursorname|IND-recordname
 05 IND-column

Comments: • When using indicator variables, prefix them with the 01 level name,
because APS can generate duplicate names with different 01 levels.

• When column contains an underscore, it changes to a hyphen at
program generation.

• Normally, the IND-cursorname structure references a cursor set. To
override this structure when generating indicator variables, set the
&D2-USE-CURSOR-IND flag to NO in the APS CNTL member
APDB2IN. This generates the indicator variables with the IND-
recordname structure.

OCCURS

Category: Data Structure Painter construct (see Data Structures)

Description: Code OCCURS clauses in your data structures.

Syntax: dataname(OCCURSclause) [TIMES]
[... DO|ODO dataname]
[... IX|IB|IXB|IXBY dataname]
[... ASCENDING KEY IS dataname]
[... DESCENDING KEY IS dataname]
 ... PICformat
Reference

350

rfpubb.book Page 350 Tuesday, February 19, 2002 9:56 AM
Shorthand syntax for the dimensions of a table in an OCCURS clause.

Parameters:

Comment: Always code an INDEXED BY clause on a continuation line.

Examples: Data Structure Painter format:

-LINE- ------- Data Structure Painter --------
000001 EXDS-TABLE
000002 EXDS-TABLE-3 (1-99)
000003 ... ODO EXDS-TABLE-3-SIZE
000004 ... IXB EXDS-INDEX
000005 ... X20

Generated COBOL code:

01 EXDS-TABLE.
 05 EXDS-TABLE-3 OCCURS 1 TO 99
 DEPENDING ON
 EXDS-TABLE-3-SIZE
 INDEXED BY EXDS-INDEX
 PIC X(20).

Data Structure Painter format:

-LINE- ------- Data Structure Painter --------
000001 TYPE-DESC-RATE-CONSTANTS X90
000002 TYPE-DESC-RATE-TABLE-REDEF R
000003 TYPE-DESC-RATE-TABLE (30)
000004 ... ASCENDING KEY IS TYPE-CODE
000005 ... IXB DATA-INDEX
000006 TYPE-CODE X
000007 DESC-CODE X
000008 RATE-CODE X

OCCURS Format Generated Code

(number) OCCURS number

(number) TIMES OCCURS number TIMES

(number1-number2) OCCURS number1 TO number2

(number1 TO number2) OCCURS number1 TO number2

(&variable) OCCURS &variable

(&variable1 TO &variable2) OCCURS &variable1 TO &variable2

DO|ODO Generates DEPENDING ON

... IX|IXB|IXBY|IB Generates INDEXED BY
Reference

OPT 351

rfpubb.book Page 351 Tuesday, February 19, 2002 9:56 AM
Generated COBOL code:

01 TYPE-DESC-RATE-CONSTANTS PIC X(90).
01 TYPE-DESC-RATE-TABLE-REDEF REDEFINES
 TYPE-DESC-RATE-CONSTANTS.
 05 TYPE-DESC-RATE-TABLE OCCURS 30
 ASCENDING KEY IS TYPE-CODE
 INDEXED BY DATA-INDEX.
 10 TYPE-CODE PIC X.
 10 DESC-CODE PIC X.
 10 RATE-CODE PIC X.

Data Structure Painter format:

-LINE- ------- Data Structure Painter --------
000001 LOAN-RATE-TABLE
000002 LOAN-RATE-ROW OCCURS 10 TIMES
000003 ... ASCENDING KEY IS TYPE-CODE
000004 ... IXB DATA-INDEX
000005 TYPE-CODE PIC X(05)

Generated COBOL code:

01 LOAN-RATE-TABLE.
 05 LOAN-RATE-ROW OCCURS 10 TIMES
 ASCENDING KEY IS TYPE-CODE
 INDEXED BY DATA-INDEX.
 10 TYPE-CODE PIC X(05).

OPT

Category: Program Painter and Specification Editor keyword (see Keywords)

Compatibility: Programs created in Program Painter

Description: Suppress the mainline program section generated by the NTRY or PROC
keyword, in order to supply your own screen and program invocation
logic. Use OPT only in programs with screens.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 NTRY|
 PROC
 OPT PROG
Reference

352

rfpubb.book Page 352 Tuesday, February 19, 2002 9:56 AM
Comment • You can use PROGRAM, PROGRAMMER, PCONV, or PCONVERT in
place of PROG.

• Code an NTRY, PROC, or OPT statement for each program.

• To generate a batch program template with a PROCEDURE
DIVISION USING statement, code PROC.

• To generate a program template that fully defines all parts of
your program except for the procedural code that you supply,
code NTRY.

OVERPRINT

Category: Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Create Reports with Report Writer.)

Compatibility: Batch environments

Description: Print one line on top of the other without advancing the line printer.
Use this feature to create bold text or to underscore text.

Syntax: OVERPRINT|O WHEN ’characterstring’ AT COLUMN integer

Parameters:

Comment: In the mock-up, the two lines of text that print on one line of the page
must be consecutive. On the first line enter a text string. On the second
line enter the text that prints over the first line, and to the right of this
text enter a unique characterstring to identify the line. When the report
prints, blanks replace characterstring in the mock-up.

characterstring Line or text to be overprinted; must be identical
to characterstring in mock-up; delimit with
single or double quotation marks.

integer Starting column number of characterstring on
the mock-up.
Reference

PAGE LIMIT 353

rfpubb.book Page 353 Tuesday, February 19, 2002 9:56 AM
Examples: Underscore text within a page heading. Below are lines 7 and 8 of a
mock-up. The identifying character string, NO ADVANCING, begins in
column 70 of the second line.

XXXXXXX

NO ADVANCING

The OVERPRINT clause:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS PAGE HEADING.
 MOCKUP LINES 7 THRU 9
 OVERPRINT WHEN ’NO ADVANCING’ AT COLUMN 70

The printed result:

XXXXXXX

Print text within the report heading of a mock-up twice, to appear as
bold type. The identifying character string begins in column 70.

WIDGETS
WIDGETS
DITTO

The OVERPRINT statement:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS REPORT HEADING LINE 20 NEXT GROUP NEXT PAGE.
 MOCKUP LINES 1 THRU 6
 OVERPRINT WHEN ’DITTO’ AT COLUMN 70

The printed result:

WIDGETS

PAGE LIMIT

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer.)

Compatibility: Batch environments
Reference

354

rfpubb.book Page 354 Tuesday, February 19, 2002 9:56 AM
Description: Define the page length and the vertical subdivisions of a printed page.

Syntax: PAGE LIMIT IS|ARE number [LINE|LINES]
 [FIRST DETAIL linenumber]
 [LAST DETAIL linenumber]
 [FOOTING linenumber] [.]

Parameters:

Comments: • Code PAGE LIMIT before FIRST DETAIL, LAST DETAIL, or FOOTING.

• Code FIRST DETAIL, LAST DETAIL, and FOOTING in any order.

• Each report group should fit on one page; Report Writer never splits
a report group across page boundaries.

• Coding PAGE LIMIT assumes default values.

• Omitting FIRST DETAIL assigns the heading line value to linenumber.

• Omitting either LAST DETAIL or FOOTING assigns the PAGE number
value to them.

• Coding FOOTING without LAST DETAIL assigns the FOOTING
linenumber to LAST DETAIL linenumber.

• Coding LAST DETAIL without FOOTING assigns the LAST DETAIL
linenumber to FOOTING linenumber.

number LINE|LINES Number of lines on each report page.
Number cannot exceed 3 digits and must be
greater than or equal to the FOOTING
linenumber.

FIRST DETAIL linenumber First detail line. Print control break heading
and report body detail lines beginning on
linenumber. Print REPORT and PAGE
HEADING groups before linenumber.

LAST DETAIL linenumber Line number of the last report body detail
line. Print CONTROL FOOTING, PAGE
FOOTING, and REPORT FOOTING lines after
this number. Linenumber must be greater
than FIRST DETAIL linenumber.

FOOTING linenumber Last line number of the last control footing
report group. Print PAGE FOOTING and
REPORT FOOTING lines after this number.
Linenumber must be greater than or equal
to LAST DETAIL linenumber.
Reference

Panel Options, ISPF Dialog 355

rfpubb.book Page 355 Tuesday, February 19, 2002 9:56 AM
• Omitting PAGE LIMIT generates a single-page report of indefinite
length without page and line counter registers.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 RED STOCK-REPORT
 CONTROLS ARE FINAL WS-LOCATION-CODE
 PAGE LIMIT IS 50
 FIRST DETAIL 10
 LAST DETAIL 40
 FOOTING 47.

Panel Options, ISPF Dialog

Compatibility: ISPF Dialog target

Category: Screen Painter feature

Description: Generate native panel definition statements.

Procedure: To generate native panel definition statements, follow these steps.

1 From any screen in the Screen Painter, select Actions ISPF Panel
Options from the action bar or enter is in the Command field. The
ISPF Panel Options screen displays.

2 Complete the screen fields as follows:

Field Description and Values

Command Field Enter screen field name for the panel
command field that allows end users to
enter ISPF commands and prevents
truncation errors when they use PF keys.
Default is the first unprotected I/O field on
the screen.

This option generates the native)BODY
CMD(variable) statement.
Reference

356

rfpubb.book Page 356 Tuesday, February 19, 2002 9:56 AM
3 To save your selections and exit this screen, press F3 or enter end in
the Command field. To exit without saving your selections, enter
cancel in the Command field.

PARA and Paragraphs

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Indicate a paragraph in your program code. A paragraph is a Procedure
Division routine that you write and perform specifically for one

Long Message Short
Message

Enter sysmsg, if specified on Screen
Generation Parameters screen, or a screen
field name for the panel long and short
message fields. These fields allow the
program to move literal messages to the
screen.

These options generate the native)BODY
LMSG(variable) statement for the long
message and the)BODY SMSG(variable)
statement for the short message.

Help Panel Enter the name of the panel to display, if
the end user requests help.

This option generates the HELP =
panelname statement.

Pfkey Option P Program controls PF key processing. APS
saves the end user’s original PF key values
and replaces them with literals not
recognized by ISPF, so that you can control
the PF key usage. When the program
terminates, the original PF key values are
restored. See PF Key Values.

I Default. ISPF controls PF key processing.

Field Description and Values
Reference

PARA and Paragraphs 357

rfpubb.book Page 357 Tuesday, February 19, 2002 9:56 AM
program. Use paragraphs to perform the following, depending on
which APS tool you use.

Syntax: Format 1:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 PARA paragraphname [SECTION.]
 paragraphcode

Format 2:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60--
 .
 .
 PERFORM paragraphname [(arguments)]
 .
 .
 .
 PARA paragraphname [(+|-arguments)]
 statement
 .
 .
 .
 PERFORM subparagraphname [(arguments)]
 PARA subparagraphname [(+|-arguments)]
 statement
 .
 .
 .
 WS
 01 group-level-data-item
 05 elementary-data-item
 .
 .
 .

Comments: • Use Format 1 with SECTION to code a SORT procedure.

• The keyword PARA, followed by a paragraph name with an optional
list of arguments, denotes a paragraph. Within a paragraph,

Use paragraphs in... To perform...

Online Express Custom actions for events; Custom routines
at window events

Specification Editor Custom routines in the Procedure Division

Program Painter Custom routines in the Procedure Division
Reference

358

rfpubb.book Page 358 Tuesday, February 19, 2002 9:56 AM
indentation determines the exact positioning of its logic statements,
or statement blocks.

• A paragraph ends with the next appearance of any Procedure
Division keyword, except the comment keyword (/*); there is no
need to code an END-paragraphname.

• Code at least one PERFORM statement before any PARA keywords
in your program. Generally, you code a PERFORM statement that
performs your main logic paragraph.

Paragraph Rules:

Rules for coding paragraphs in Online Express:

• A paragraph can consist of a main paragraph, other paragraphs that
the main paragraph performs, and Data Division source code for the
paragraphs.

• For each paragraph, enter the PARA keyword in the KYWD column
and the paragraph name in column 12 on the same line. On the
following lines, enter COBOL, COBOL/2, or S-COBOL paragraph
statements. Do not use any other APS keywords in paragraphs.

• After all paragraphs, use APS Data Division keywords to define data
items that the paragraphs reference.

Rules for coding paragraphs in the Specification Editor and Program
Painter:

• A paragraph can perform other paragraphs.

• For each paragraph, enter the PARA keyword in the KYWD column
and the paragraph name in column 12 on the same line. On the
following lines, enter COBOL, COBOL/2, or S-COBOL paragraph
statements. Do not use any other APS keywords in paragraphs.

Anywhere in the program, use APS Data Division keywords to define
any data items that the paragraphs reference.
Reference

PERFORM 359

rfpubb.book Page 359 Tuesday, February 19, 2002 9:56 AM
PERFORM

Category: S-COBOL structure (see S-COBOL Structures)

Description: Depart from the normal program execution sequence to execute a
particular paragraph or section and then return control to the
statement immediately following the PERFORM statement.

Syntax: Format 1, perform a paragraph:

PERFORM paragraphname

Format 2, perform a paragraph and pass arguments:

PERFORM paragraphname (actualargument1[[,]
... actualargument2[,] ... actualargumentN])
 .
 .
PARA paragraphname ([+|-]formalargument1[[,]
... [+|-]formalargument2[,] ... [+|-]formalargumentN])

Parameters: +|- A plus (+) or minus (-) sign preceding a formal
argument passes values between actual
arguments and formal arguments, as follows.

• With a plus sign (+), PERFORM passes the
actualargument value to formalargument
after the paragraph executes. The program
does not return the formalargument value
to actualargument.

• With a minus sign (-), PERFORM passes the
formalargument value to the
actualargument after the paragraph
executes.

• If there is no plus or minus sign, the
PERFORM passes the actualargument to its
corresponding formalargument. After the
paragraph executes, PERFORM passes the
formalargument back to its corresponding
actualargument.
Reference

360

rfpubb.book Page 360 Tuesday, February 19, 2002 9:56 AM
Comments: • When continuing a list of arguments onto one or more other lines,
do not break an argument.

• The number of actual arguments must equal the number of formal
argument names and be in the same order.

Examples: PERFORM PARA-1(’ABC’, ABC-FLD, RESULT)
 .
 .
 .
 PARA-1(+ARG1, +ARG2, -’Y’)

Generates:

 MOVE ’ABC’ TO ARG-1
 MOVE ABC-FLD TO ARG2
 PERFORM PARA-1 THRU
 MOVE ’Y’ TO RESULT

Perform GET-SALARY (line 5010); pass the literal 20 to HOURS-WORKED
and the value of HOURLY-RATE to PAY-RATE before calculating TOT-PAY
(line 5020). After the GET-SALARY paragraph executes, pass the value of
PAY-RATE to HOURLY-RATE and the value of TOT-PAY to WEEKLY-PAY.

-LINE- -KYWD- 12-*----20---*----30---*----40---*----50---*--
000100 NTRY
 .
 .
 .
003010 IF CLASS = ’HALF-TIME’
003020 PERFORM GET-SALARY(20,
003021 ... HOURLY-RATE, WEEKLY-PAY)
003030 ELSE
003040 PERFORM GET-SALARY(40,
003041 ... HOURLY-RATE, WEEKLY-PAY)
003050 WEEKLY-PAY = WEEKLY-PAY * TAX
003060 COMPUTE MEDICAL-DEDUC =
003061 ... HOURLY-RATE * 1.50

actualargument Values you send to or receive from a
formalargument in the paragraph; can be
literals, identifiers, arithmetic expressions,
variables, or index names.

formalargument Values you receive from or send to an
actualargument in the PERFORM statement.

paragraphname Name of paragraph to perform.
Reference

PF Key Values 361

rfpubb.book Page 361 Tuesday, February 19, 2002 9:56 AM
 .
 .
 .
005010 PARA GET-SALARY(+HOURS-WORKED,
005011 ... PAY-RATE,-TOT-PAY)
005020 TOT-PAY = HOURS-WORKED * PAY-RATE
 .
 .
 .

PF Key Values

Category: Data communications feature (see also Data Communication Calls)

Compatibility: CICS, IMS DC, and ISPF Dialog targets

Description: Use the PF key 88-levels generated by APS.

Syntax: CICS

PFKEY-FIELD PIC X(01).
 88 ENTER-KEY VALUE ’’’. (single quotation mark)
 88 CLEAR-KEY VALUE ’_’.
 88 PEN VALUE ’=’.
 88 OPID VALUE ’W’.
 88 MSRE VALUE ’X’.
 88 STRF VALUE ’H’.
 88 TRIG VALUE ’"’. (double quotation mark)
 88 PA1 VALUE ’%’.
 88 PA2 VALUE ’>’.
 88 PA3 VALUE ’,’.
 88 PF0 VALUE ’’’. (single quotation mark)
 88 PF00 VALUE ’’’. (single quotation mark)
 88 PF1 VALUE ’1’.
 88 PF2 VALUE ’2’.
 88 PF3 VALUE ’3’.
 88 PF4 VALUE ’4’.
 88 PF5 VALUE ’5’.
 88 PF6 VALUE ’6’.
 88 PF7 VALUE ’7’.
 88 PF8 VALUE ’8’.
 88 PF9 VALUE ’9’.
Reference

362

rfpubb.book Page 362 Tuesday, February 19, 2002 9:56 AM
 88 PF1 VALUE ’:’.
 88 PF11 VALUE ’#’.
 88 PF12 VALUE ’@’.
 88 PF13 VALUE ’A’.
 88 PF14 VALUE ’B’.
 88 PF15 VALUE ’C’.
 88 PF16 VALUE ’D’.
 88 PF17 VALUE ’E’.
 88 PF18 VALUE ’F’.
 88 PF19 VALUE ’G’.
 88 PF20 VALUE ’H’.
 88 PF21 VALUE ’I’.
 88 PF22 VALUE ’[’.
 88 PF23 VALUE ’.’.
 88 PF24 VALUE ’<’.

IMS DC

APS assigns character values for the 24 PF keys and the ENTER key to
APS-painted screens. NTRY generates logic to place this portion of the
input message in a field with 88-level condition names to facilitate
program testing for PF and ENTER keys.

TP-PF-KEY PIC X(132).
 88 PF0 VALUE ’ ’.
 88 PF00 VALUE ’ ’.
 88 PF1 VALUE ’1’.
 88 PF01 VALUE ’1’.
 88 PF2 VALUE ’2’.
 88 PF02 VALUE ’2’.
 88 PF3 VALUE ’3’.
 88 PF03 VALUE ’3’.
 88 PF4 VALUE ’4’.
 88 PF04 VALUE ’4’.
 88 PF5 VALUE ’5’.
 88 PF05 VALUE ’5’.
 88 PF6 VALUE ’6’.
 88 PF06 VALUE ’6’.
 88 PF7 VALUE ’7’.
 88 PF07 VALUE ’7’.
 88 PF8 VALUE ’8’.
 88 PF08 VALUE ’8’.
 88 PF9 VALUE ’9’.
 88 PF09 VALUE ’9’.
 88 PF10 VALUE ’A’.
 88 PF11 VALUE ’B’.
 88 PF12 VALUE ’C’.
 88 PF13 VALUE ’D’.
Reference

PF Key Values 363

rfpubb.book Page 363 Tuesday, February 19, 2002 9:56 AM
 88 PF14 VALUE ’E’.
 88 PF15 VALUE ’F’.
 88 PF16 VALUE ’G’.
 88 PF17 VALUE ’H’.
 88 PF18 VALUE ’I’.
 88 PF19 VALUE ’J’.
 88 PF20 VALUE ’K’.
 88 PF21 VALUE ’L’.
 88 PF22 VALUE ’M’.
 88 PF23 VALUE ’N’.
 88 PF24 VALUE ’O’.
 88 ENTER-KEY VALUE ’ ’.
 88 NO-KEY-USED VALUE LOW-VALUES.

During screen painting, if you paint PF key values or use a PF key to
supply all or part of the trancode value, you cannot use the above
facility for PF key testing.

ISPF Dialog

TP-PF-KEY PIC X(04).
 88 ENTER-KEY VALUE ’ ’.
 88 PF1 VALUE ’PF01’.
 88 PF01 VALUE ’PF01’.
 88 PF2 VALUE ’PF02’.
 88 PF02 VALUE ’PF02’.
 88 PF3 VALUE ’PF03’.
 88 PF03 VALUE ’PF03’.
 88 PF4 VALUE ’PF04’.
 88 PF04 VALUE ’PF04’.
 88 PF5 VALUE ’PF05’.
 88 PF05 VALUE ’PF05’.
 88 PF6 VALUE ’PF06’.
 88 PF06 VALUE ’PF06’.
 88 PF7 VALUE ’PF07’.
 88 PF07 VALUE ’PF07’.
 88 PF8 VALUE ’PF08’.
 88 PF08 VALUE ’PF08’.
 88 PF9 VALUE ’PF09’.
 88 PF09 VALUE ’PF09’.
 88 PF10 VALUE ’PF10’.
 88 PF11 VALUE ’PF11’.
 88 PF12 VALUE ’PF12’.
 88 PF13 VALUE ’PF13’.
 88 PF14 VALUE ’PF14’.
 88 PF15 VALUE ’PF15’.
 88 PF16 VALUE ’PF16’.
 88 PF17 VALUE ’PF17’.
Reference

364

rfpubb.book Page 364 Tuesday, February 19, 2002 9:56 AM
 88 PF18 VALUE ’PF18’.
 88 PF19 VALUE ’PF19’.
 88 PF20 VALUE ’PF20’.
 88 PF21 VALUE ’PF21’.
 88 PF22 VALUE ’PF22’.
 88 PF23 VALUE ’PF23’.
 88 PF24 VALUE ’PF24’.

To let your program control PF key values, specify P(rogram controlled)
in the PFKEY Option field on the ISPF Panel Options screen. See Panel
Options, ISPF Dialog.

Precompiler Options

Category: Application generation

Description: Define variations and special features for program precompilation.

Procedure: 1 From the APS Options Menu enter option 3 in the Option field.
Alternatively, from any APS screen enter opt 3 in the Command
field. The Precompiler Options screen displays.

2 Set options appropriate for your environment as described below.

Option Description and Values

Apost Override Quote.

Yes Default. Use the apostrophe character to delimit non-
numeric literals in your input source.

Quote Override Apost.

Yes Use the single quote character to delimit non-numeric
literals in your input source.

No Default

SCBtrace Yes Activates the SAGE-TRACE-FLAG debugging facility.

RWT Yes Default. Generate COBOL code from APS Report Writer
statements. Specify with COBOL II compiler.

No Pass Report Writer statements directly to theCOBOL
compiler.
Reference

Precompiler Options 365

rfpubb.book Page 365 Tuesday, February 19, 2002 9:56 AM
Note: For very large Report Writer programs, enter rwt=bigrwt in the APS
Parm field on the Generator Options screen.

Lang Indicate which type of source to process and which columns to process.

SCB=yes Default. Processes APS specifications (S-COBOL) in
columns 8-72; the symbol &07 in your code forces a
character into column 7.

COBOL=yes Process COBOL source in columns 1-72.

JCL=yes Process JCL in columns 1-72. Useful for text-processing JCL
and for controlling columns 1-6 of S-COBOL.

Text=yes Process any source in columns 1-80. APS considers all
columns as text, and generates no sequence numbers.
Automatically set XLATE=FMP. To override XLATE=FMP,
enterXLATE=value in the APS Parm field. XLATE=value in
the APS Parm field.

XLATE Specify which processing step(s) that APS performs. You can stop processing
at any of the steps listed below to help isolate the step at which errors occur.
The steps are listed in the order in which APS executes them. All options
except ALL are mutually exclusive.

ALL=yes Default. Process all source code through all applicable
processing steps and generates an error report; use when
COBOL compile immediately follows in jobstream.

FMP=yes Stop processing after APS macros and user-defined
Customization Facility macros are processed.

RED=yes Stop processing after report mock-ups are translated into
IBM Report Writer source.

RWT=yes Stop processing after Report Section is translated into
COBOL Working-Storage and S-COBOL.

MockupFMP Yes Scan lines in report mock-ups and processes the
characters % $ & and + as Customization Facility symbols.

No Default.

SUBR Yes Specify that the generated source is a subroutine
program.

No Default. Specify that the generated source is a primary
program.

Narrow Yes Default. Define 80 columns as the message report width.

Option Description and Values
Reference

366

rfpubb.book Page 366 Tuesday, February 19, 2002 9:56 AM
No Define 132 columns as the width.

Evalmess Yes Generate messages that list evaluation bracket
resolutions. Usually results in long listings.

No Default.

Seq Specifiy the type of sequence numbers that APS generates. See also,
Genident, Spaceident, Ident.

COBOL=yes Generate COBOL-style numbers in cols 1-6.

Record=yes Generate new numbers in columns 73-80, incrementing
by 100 for each input record and by two for each
generated record.

Identifier=yes Generate line numbers in columns 73-80; columns 73-74
contain 0.

Syntax Specify which compiler to use.

COBOLII=yes Generate COBOL-II syntax.

S-COBOL=yes Generate S-COBOL syntax.

Emark Generate a three-character string marking error and warning messages in
the message report.

Questions=yes Default. Generate ???.

Dollars=yes Generate $$$.

3-Char String
=string

Generate the string you specify.

Genseq Override Spaceseq.

Yes Default. Generate sequence numbers in columns 1-6 for
blank or out-of-sequence lines of source code and when
new lines are generated.

Spaceseq Override Genseq.

Yes Generate spaces in columns 1-6; incompatible with
Lang=Text.

Genident See also, Spaceident, Ident, Seq.

Yes Generate sequence numbers in columns 73-80 for blank
or out of sequence source code lines and when new lines
are generated.

No Default. Generate the last known contents of columns
73-80 when new lines are generated and passes
identifiers as they exist in GENSRC.

Option Description and Values
Reference

Precompiler Options 367

rfpubb.book Page 367 Tuesday, February 19, 2002 9:56 AM
Spaceident See also, Genident, Ident, Seq.

Yes Generate spaces in columns 73-80. Incompatible with
Lang=Text.

Main Specify location of the main input source.

MAININ=yes Default. Read from file named by external name MAININ.
Use this default unless using your own JCL.

Instream=yes Read source instream with the JCL that you provide.

Member Name=
membername

Read from the PDS or file name or source statement
library designated by the external name SCELIB.

Ident See also, Genident, Spaceident, Seq.

Yes Generate the internal program name in columns 73-80.

No Default.

FMP Yes Default. Process APS macros and user-defined
Customization Facility macros.

No Use only with your own JCL skeleton.

Source Yes Print the main input source program, specified in the
MAIN option, after the message report.

No Default.

Gendirect Yes Allow generatation of nested IF statements in the COBOL
source.

Gencomment Yes Generate replaced source statements as comments in the
COBOL source.

NO Default.

Usernames Yes Generate the following prefix for APS-generated
paragraphs: paraname-

No Default. Generate the following prefix for APS generated
paragraphs: G--

Note: To generate any other prefix, enter the following in the APS Parm
field on this screen. usernames=prefix

APS Parm Display all Precompiler options whose default values you override. These
values also display in the APS Parm field on the Generator Options screen.
APS saves the values you change on the APS Parm field on the Precompiler
Option screen. APS does not save values that you change in the APS Parm
field on the Generator Options screen.

Option Description and Values
Reference

368

rfpubb.book Page 368 Tuesday, February 19, 2002 9:56 AM
Example:

• Sequence and identify your generated source code lines as you
prefer. For example, generate sequence numbers in columns 73 to
80, numbering lines by 100 for input records and by 2 for S-COBOL
records.

GENIDENT ===> YES
SEQ=RECORD ===> YES

The generated lines are:

Generate sequence numbers in columns 73-80, with 00 in columns
73-74.

GENIDENT ===> YES
SEQ=IDENTIFIER ===> YES

The generated lines are:

Input S-COBOL

00000100 00000002

00000200 00000004

00000300 00000006

Input S-COBOL

00000001 00000001

00000002 00000002

00000003 00000003
Reference

Precompiler Options 369

rfpubb.book Page 369 Tuesday, February 19, 2002 9:56 AM
• Stop APS processing at certain steps to help isolate the step at which
errors occur. For example, process S-COBOL, the APS macros and
user-defined Customization Facility macros and APS report mock-
ups, and then stop.

XLATE=RED ===> YES

Process S-COBOL, and report mock-ups but do not process the APS
macros or user-defined Customization Facility macros.

XLATE=RED ===> YES
FMP ===> NO

Process only the APS macros and user-defined Customization Facility
macros, columns 1-80. You must supply your own JCL to support this
override.

XLATE=FMP ===> YES
LANG=TEXT ===> YES

• Specify the input source that APS reads if it resides in an external
file other than MAININ. When doing so, you must supply your own
JCL skeletons. For example, read the main input source from the file
in MYLIB, called XYZ. You must supply your own SCELIB DD
statement to describe MYLIB.

MAIN=MEMBER NAME ===> XYZ

• Override the default prefix that APS generates for paragraphs. For
example, generate the prefix paraname- for all APS-generated
paragraphs, rather than the default prefix G--.

USERNAMES ===> YES

Generate the prefix xyz- for all APS-generated paragraphs, rather
than the default prefix G--.

APS Parm ===> USERNAMES=XYZ-

• Accept double quotation characters, rather than apostrophes, as the
delimiters for non-numeric literals, and write an error message
report for a 132-column output device.

QUOTE ===> YES
NARROW ===> NO
Reference

370

rfpubb.book Page 370 Tuesday, February 19, 2002 9:56 AM
PROC

Category: Program Painter and Specification Editor keyword (see Keywords)

Compatibility: Non-IMS batch programs

Description: Generate the batch program template, including a PROCEDURE
DIVISION USING clause that enables a called program to receive data
from the calling program.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 PROC [variablename1 variablename2 ... variablenameN]

Comments: • Code an NTRY, PROC, or OPT statement for each program.

• The generated $TP-ENTRY generates a program template to
send the appropriate window depending on the program
invocation mode. To suppress the window and program
invocation logic from your program template, code OPT PROG
(OPT).

• To generate a program template to define all parts of your
program except for the procedural code, code See NTRY.

• Use PROC instead of NTRY in non-IMS batch programs called by
other programs. For IMS programs, use NTRY.

• Code Linkage Section data structures for the variables that the
called program receives.

Example: Program Painter code:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 PROC REC-2 REC-2 REC-3

Generated COBOL code:

PROCEDURE DIVISION USING REC-2 REC-2 REC-3
Reference

Program Control Blocks, IO 371

rfpubb.book Page 371 Tuesday, February 19, 2002 9:56 AM
Program Control Blocks, IO

Category: Data communication feature (see also Data Communication Calls)

Compatibility: IMS DC target

Description: APS generates an IO PCB with the following format in the Linkage
Section.

LINKAGE SECTION.
01 IO-PCB.
 05 IO-PCB-LTERM PIC X(8).
 05 FILLER PIC X(2).
 05 IO-PCB-STATUS PIC X(2).
 05 IO-PCB-INPUT-PREF.
 10 IO-PCB-DATE PIC S9(7) COMP-3.
 10 IO-PCB-TIME PIC S9(7) COMP-3.
 10 IO-PCB-MSG-SEQ PIC S9(7) COMP.
 05 IO-PCB-MOD-NAME PIC X(8).
 05 IO-PCB-USER-ID PIC X(8).

In an APS IMS/SQL program, code a PSB with the same name as your
DB2 subschema. The PSB must specify an IO PCB (by setting CMPAT=YES
in the PSBGEN). If your program uses MSG-SW, the PSB must also specify
an alternate IO PCB.

Comments: • A program requires IO PCBs to obtain an input message and return
a reply to the originating terminal.

• To send a message to a logical terminal instead of to the originating
terminal, code the MSG-SW call and specify an alternate IO PCB that
you define with MODIFY=YES in the program specification block
(PSB). MSG-SW cannot include the EXPRESS keyword when it
references this alternate IO PCB.
Reference

372

rfpubb.book Page 372 Tuesday, February 19, 2002 9:56 AM
Program DB/DC Report (PG02)

Category: APS-generated report (see Application Reports)

Description: The Program DB/DC Report includes documentation summaries on the
subschemas, PSBs, and screens used by a program. The Program DB/DC
Report has a separate section for database views, record I/O areas, and
screen I/O areas.

The Database Views section provides the following information.

• Record names of the root and each dependent segment

• Segments in hierarchical sequence, indented to show each
segment’s level in the database

• Functions (PROCOPTS) that can be performed for each segment

• Key and sequence fields for accessing each record

• VSAM file descriptions

The Record I/O Areas section provides information on the COBOL I/O
areas for the database and file records. Records are listed alphabetically
by record name.

The Screen I/O Areas section provides information on COBOL I/O areas
for up to 20 screens arranged alphabetically.

Comment: Produce the Program DB/DC Report from the Documentation Facility.

Example:

REPORT CODE: PG02 APS PROGRAMMER SUBSYSTEM 01/17/92 14:29
 PROGRAM DB/DC REPORT

PROGRAM: TDOM PSB/SUBSCHEMA: TDDB2
SCREENS: TDOM

TABLES/VIEWS: (DB2 RECORDS)

TABLE: TDCUST-REC
TABLE: TDODET-REC
Reference

Program DB/DC Report (PG02) 373

rfpubb.book Page 373 Tuesday, February 19, 2002 9:56 AM
TABLE: TDORDR-REC
TABLE: TDPART-REC

RECORD IO AREAS

RECORD: TDCUST-REC
 **
 * DCLGEN TABLE : MKTAEA.TDCUST USER: CLSTR1 *
 * LIBRARY: CLSAPS.CLS2.COPYLIB *
 * MEMBER : TDCUST DATE: 90/11/27 *
 * ACTION(REPLACE) TIME 13:11:44 *
 * DB2 SYSTEM: DB2B *
 **

 EXEC SQL DECLARE MKTAEA.TDCUST TABLE
 (CM_CUSTOMER_NO CHAR(6) NOT NULL,
 CM_CUSTOMER_NAME CHAR(20) ,
 CM_CUSTOMER_ADDR CHAR(20) ,
 CM_CUSTOMER_CITY CHAR(20) ,
 CM_CUSTOMER_ZIP CHAR(9))
 END-EXEC.

 **
 * COBOL DECLARATION FOR TABLE MKTAEA.TDCUST *
 **
 01 TDCUST-REC.
 10 CM-CUSTOMER-NO PIC X(6).
 10 CM-CUSTOMER-NAME PIC X(20).
 10 CM-CUSTOMER-ADDR PIC X(20).
 10 CM-CUSTOMER-CITY PIC X(20).
 10 CM-CUSTOMER-ZIP PIC X(9).

**
* THE NUMBER OF COLUMNS DESCRIBED BY THE DECLARATION IS 5 *
**
SCREEN IO AREAS

SCREEN: TDOM FORMAT (:/D/M)
 RULEDLINE:
 INITIAL CURSOR (X):: :
 COLOR: :: :
 UNDERSCORE (U/:):: : :: :
 BLINKING (B/:): :: : :: :
Reference

374

rfpubb.book Page 374 Tuesday, February 19, 2002 9:56 AM
 REVERSE VIDEO (R/:): : :: : :: :
 INTENSITY (B/:/D): : : :: : :: :
 PROTECT (P/U): : : : :: : :: :
 01 TDOM-RECORD. : : : : : :: : :: :
 05 TDOM-FUNCTION PIC X(1). U B : : : :: X :: :
 05 TDOM-ORDER-NO PIC X(6). U B : : : :: : :: :
 05 TDOM-SAVEKEY-1 PIC X(8). P D : : : :: : :: :
 05 TDOM-CUSTOMER-NO PIC X(6). U B : : : :: : :: :
 05 TDOM-CUSTOMER-NAME PIC X(20). U B : : : :: : :: :
 05 TDOM-CUST-ENTRY-DATE PIC X(8). U B : : : :: : :: :
 05 TDOM-ORDER-DEL-DUE-D PIC X(8). U B : : : :: : :: :
 05 TDOM-ORDER-DEL-INSTR PIC X(20). U B : : : :: : :: :
 05 TDOM-TABLE-1. : : : : : :: : :: :
 10 FILLER OCCURS 5. : : : : : :: : :: :
 15 TDOM-ROW-FUNCTION
 PIC X(1).
 15 TDOM-PART-NO PIC X(8).
 15 TDOM-LINE-NO PIC X(4).
 15 TDOM-PART-SHORT-DESC
 PIC X(14).
 15 TDOM-QTY-ORDERED
 PIC X(8).
 15 TDOM-QTY-BASE-PRICE
 PIC X(10).
 15 TDOM-TAX-CATEGORY
 PIC X(1).
 15 TDOM-SAVEKEY-2 PIC X(15).
 05 TDOM-MESSAGE PIC X(79). P B : : : :: : :: :

Program Definition Report (PG01)

Category: APS-generated report (see Application Reports)

Description: The Program Definition Report produces a listing of the program code
you create in the Program Painter. Use this report when you need to
review program listings to troubleshoot problems, or when you need to
document completed programs in your applications.

Comment: Produce the Program Definition Report from the Report Generator,
Painter Menu, or Application Painter.
Reference

Program Specification Blocks 375

rfpubb.book Page 375 Tuesday, February 19, 2002 9:56 AM
Example:

REPORT CODE: PG01 APS APPLICATION PAINTER PAGE 1
 PROGRAM DEFINITION REPORT 01/18/92 15:10
 CLSAPS.CLS2
SELECTION CRITERIA:
 TDCM

PROGRAM: TDCM CREATED: 03/19/90
TITLE :
UPDATED : 12/19/90

START KYWD STATEMENT LINE NO
COL ---- --

 8 SYM1 % INCLUDE APSMACS (APXMACS) 00010007
 8 NTRY TDCM * NORETRY 00020007
12 /** 00030007
12 /** 00040007
12 /*** 00050007
12 /*** MAINLINE LOGIC 00060007
12 /*** 00070007
12 /** 00080007
12 /** 00090007
12 TP-PERFORM PX-INIT-HOUSEKEEPING 00100007
12 /** 00110007
12 /* CONTROL POINT: - POST-SCREEN-READ 00120007
12 /** 00130007
12 IF SC-ED-ALL-OK 00140007
16 MOVE SPACE TO TDCM-MESSAGE 00150007

Program Specification Blocks

Compatibility: CICS and IMS DB targets

Description: When you assign a PSB to a program by naming the PSB in the
Application Painter, CICS schedules only one PSB at a time. NTRY
schedules the PSB. This PSB is active until the program

• Encounters a SEND or TERM.

• Initiates a CIC-TERM-PSB and continues processing.

To ensure that your PSB remains active when you link or transfer to
another program, pass the associated PCBs in the LINK or XCTL call, as
shown below.

LINK programname [errorpara]
... [DLIUIB pcbname [pcbname ...]]
... [userparm [userparm]...]

Reference

376

rfpubb.book Page 376 Tuesday, February 19, 2002 9:56 AM
XCTL programname [errorpara]
... [DLIUIB pcbname [pcbname ...]]

The invoking program must pass the PCBs in the order that they are
coded in the Linkage Section of the invoked program.

When a program invokes a LINK to a subprogram, and passes a
scheduled PSB, it expects the PSB to remain scheduled when control
returns from the subprogram. To return without terminating the PSB,
use TERM because it does not terminate a PSB passed from a higher-
level program. To terminate a PSB, use the CIC-TERM-PSB call.

Example: Pass part of a scheduled PSB and two Linkage Section data areas.

LINK PROGRMB * DLIUIB
... ORDERDB-PCB
... ITEMDB-PCB
... USER-LINK-1
... USER-LINK-2

The PSB remains scheduled at the start of the next program.

Project and Group Options

Category: Application generation

Description: Identify application project and group location and where you want
APS to generate the project and group DDIFILE dataset.

Procedure: 1 Access the Project Group Environment screen. To do so, from the
APS Options Menu, enter option 2 in the Option field. Alternatively,
from any APS screen enter opt 2 in the Command field. The Project
Group Environment screen displays.

2 Complete the fields on the Project Group Environment screen.

Field Description

Project The name of the project. For example,
MYPROJ. Must be 1-8 alphanumeric
characters; the first character must be
alphabetic.
Reference

REC 377

rfpubb.book Page 377 Tuesday, February 19, 2002 9:56 AM
REC

Category: Program Painter and Specification Editor keyword (see Keywords)

Description:

Define a data -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 REC datastructure

Parameter:

Comments: • Each REC keyword generates an 01-level data structure. APS
transfers the REC entity to the Working-Storage Section.

• The preceding section keyword determines the placement of a data
structure in the generated program. Associated section keywords
are

Group The name of the group. For example, mygrp.
Must be 1-8 alphanumeric characters; the
first character must be alphabetic.

DDIFILE The location of the project and group
DDIFILE data set; do not specify the name
DDIFILE. Default: The project and group
path specified above. For example,
myproj.group.

Data Element Library
Prefix

Optional. The location of the Data Element
Facility APSDE data set; do not specify the
name APSDE. For example,
APSPG.PROJECT1.GROUP1.

Field Description

datastructure Valid Data Structure Painter construct.

FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)

LK Linkage Section (see LK)
Reference

378

rfpubb.book Page 378 Tuesday, February 19, 2002 9:56 AM
• Code a COBOL COPY with REC, as follows.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 REC dataname
 COPY copybookname
 ... REPLACING field1 BY field2

RED

Category: Program Painter and Specification Editor keyword (see Keywords)

Compatibility: Batch environments

Description: Name and begin the statement block that defines the report; identify
the report name, control fields, and report page characteristics.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 RED reportname
 [CODE literal]
 [CONTROL [IS] [FINAL] dataname |
 CONTROLS [ARE] [FINAL] dataname1 ... datanameN]
 [WRITE ROUTINE [IS] paragraphname]
 [PAGE LIMIT[S] IS|ARE number LINE[S]
 [FIRST DETAIL linenumber]
 [LAST DETAIL linenumber]
 [FOOTING linenumber]] [.]

Parameter:

Comments: • Each report requires RED statement. Reportnames in both the RED
and FD statements must be identical.

• Code RED clauses in any sequence.

• If reportname exceeds 20 characters, Report Writer creates an
abbreviated record name, consisting of:

• The first character of each hyphenated word of the report
name, except the last word

• A hyphen

reportname Report name of the REPORT clause in the File
Section
Reference

REDEFINES 379

rfpubb.book Page 379 Tuesday, February 19, 2002 9:56 AM
• The last word

• RECORD

For example:

Input REALLY-LONG-REPORT-NAME

Output RLR-NAME-RECORD

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 RED YEAR-END-SALES-SUMMARY
 CONTROLS ARE FINAL
 REGION REGION-MGR-FLD OFFICE
 PAGE LIMIT IS 58 LINES
 FIRST DETAIL 9
 HEADING 1
 FOOTING 58.

REDEFINES

Category: Data Structure Painter construct (see Data Structures)

Description: Code clauses in your data structures to redefine elements.

Syntax: dataname REDEF[INES]|R PICformat

Parameter:

Comment: When identifing controls in the CONTROL clause, dataname must be an
elementary data name. In the following example, B cannot be used as a
control variable because it is a group data item. To make B into an
elementary data item, use the REDEFINES clause.

WS01 A PIC X(2).
WS01 B.
 02 B-1 PIC 9(4).
 02 B-2 PIC 9(4).
WS01 B-REDEF REDEFINES B PIC X(8).
 .
 .
 .

PICformat PICTURE format for data name being redefined
Reference

380

rfpubb.book Page 380 Tuesday, February 19, 2002 9:56 AM
RED TEST-REPORT
 CONTROLS ARE A B-REDEF

Example: Data Structure Painter format:

-LINE- ------- Data Structure Painter --------
000001 WRK1-FIELD-8
000002 WRK1-FIELD-9 X4
000003 WRK1-FIELD-10 X(30)
000004 WRK1-FIELD-11 R X34

Generated COBOL code:

01 WRK1-FIELD-8.
 05 WRK1-FIELD-9 PIC X(4).
 05 WRK1-FIELD-10 PIC X(30).
01 WRK1-FIELD-11 REDEFINES WRK1-FIELD-8
 PIC X(34).

REFERENCE

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Creating Reports with Report Writer.)

Compatibility: Batch environments

Description: Establish summing capability for a non-printing detail item and sum the
item in a control footing.

Syntax: R[EFERENCE] [IS] dataname PIC[TURE] [IS] picclause
 [DATA-NAME [IS] fieldname]

Parameters: dataname Data item being referenced

DATA-NAME fieldname Name a sum accumulator established by a SUM
or REFERENCE clause. Do not define fieldname
in Working-Storage. At generation, APS inserts
fieldname after the level number in the report
group. DATA-NAME moves the value of the
internal SUM accumulator to fieldname.
Reference

REFERENCE 381

rfpubb.book Page 381 Tuesday, February 19, 2002 9:56 AM
Comments: • When you code a REFERENCE statement, the PIC clause must match
the PIC clause in the record description.

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 01 COST-DETAIL TYPE DETAIL
 MOCKUP LINE 9
 SOURCE WS-DEPT
 SOURCE WS-EMPLOYEE
 SOURCE WS-CITY
 REFERENCE EMP-CTR PIC 999
 01 TYPE CONTROL FOOTING
 MOCKUP LINE 9
 SOURCE WS-DEPT
 SUM EMP-CTR
 WS01 EMP-CTR PIC 999 VALUE 1.

If one of the PIC clauses were PIC 9(3), Report Writer would not find
a match.

• In a REFERENCE statement, the data item referenced must be
defined in Working-Storage with a VALUE clause. The value in the
VALUE clause tells Report Writer the increment to add to the
internal accumulator each time the detail line prints. In the previous
example, APS adds 1 to the internal accumulator whenever the
detail line prints.

• The generated program does not describe the referenced field,
dataname, on the report mock-up detail line, nor display it on the
printed detail line.

Code DATA-NAME when a SUM UPON clause
references a DETAIL report group, when the
program references a sum accumulator, or
when a sum accumulator requires a data name
for qualification.

PIC picclause Specify the format of dataname. If dataname is
a report mock-up field instead of a Working-
Storage field, the next matching COBOL picture
in the report mock-up is the picclause for
dataname.
Reference

382

rfpubb.book Page 382 Tuesday, February 19, 2002 9:56 AM
Example:

 LAST COUNT QUANTITY QUANTITY QUANTITY
LOCATION DATE IN STOCK ISSUED RECEIVED
XXXXXXXXXXXX 99/99/99 ZZZ,ZZ9 ZZZ,ZZ9 ZZZ,ZZ9
 ------- ------- --------
TOTAL BY LOCATION: Z,ZZZ,ZZ9 Z,ZZZ,ZZ9 Z,ZZZ,ZZ9
TOTAL NUMBER OF SALES BY LOCATION: ZZZ,ZZ9
-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 DETAIL-LINE TYPE IS DETAIL.
 MOCKUP LINE 16
 SOURCE WS-LOCATION-CODE GROUP INDICATE
 SOURCE WS-LAST-COUNT-MONTH PIC 99
 SOURCE WS-LAST-COUNT-DAY PIC 99
 SOURCE WS-LAST-COUNT-YEAR PIC 99
 SOURCE WS-QTY-IN-STOCK
 SOURCE WS-QTY-ISSUED
 SOURCE WS-QTY-RECEIVED
 REFERENCE WS-NO-OF-SALES PIC 9999
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE
 MOCKUP LINES 17 THRU 20
 SUM WS-NO-OF-SALES PIC ZZZ9

REM

Category: Program Painter and Specification Editor keyword (see Keywords)

Compatibility: Supported for COBOL only, not COBOL/2

Description: Create Identification Division Comments: text.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 REM commentline1
 .
 .
 .
 commentlineN
Reference

REPEAT 383

rfpubb.book Page 383 Tuesday, February 19, 2002 9:56 AM
REPEAT

Category: S-COBOL structure (see S-COBOL Structures)

Description: Establish a loop for testing; use with WHILE or UNTIL statement to test
the loop at the middle or at the end. This construction eliminates the
need for GO TO statements and the multiple tests that are required to
form similar loops in COBOL.

Syntax: Format 1:

REPEAT
 statementblock
UNTIL|WHILE condition
 [statementblock]

Format 2:

REPEAT VARYING|LINKING indexname|identifier1
... [FROM indexexpression]|[arithmeticexpression]
... [BY literal]|[identifier2]
 statementblock
UNTIL|WHILE condition
 [statementblock]

Format 3:

REPEAT VARYING indexname|identifier1
... [FROM indexexpression][arithmeticexpression1]
... [BY literal]|[identifier2]
... [DOWN] TO|THRU arithmeticexpression2
 [statementblock]

Format 4:

REPEAT LINKING indexname|identifier1
... [FROM indexexpression][arithmeticexpression1]
... BY identifier2
... [DOWN] TO arithmeticexpression2
 [statementblock]
Reference

384

rfpubb.book Page 384 Tuesday, February 19, 2002 9:56 AM
Format 5:

REPEAT VARYING|LINKING clause1
 . . .
[... VARYING|LINKING clauseN]
 [statementblock]
UNTIL|WHILE condition
 [statementblock]

Parameters:

Logic Execution:

• The statement block subordinate to the REPEAT, and any statement
block subordinate to the WHILE or UNTIL, forms the loop and
executes under control of the conditions specified with WHILE or
UNTIL.

• If the WHILE or UNTIL does not have a subordinate statement block,
the condition is tested at the end of the loop. Control returns to the
beginning of the REPEAT statement block until the WHILE condition
is false or the UNTIL condition is true. The next statement executed
is the first one with the same or less indentation than the
REPEAT/WHILE or REPEAT/UNTIL.

• If the WHILE or UNTIL has a subordinate statement block, it
establishes a loop which contains a test in the middle. When the
WHILE condition is FALSE or the UNTIL condition is true, control
passes out of the loop to the next statement with the same or less
indentation than the REPEAT, without executing its statement
block.

• Coding an extraneous WHILE or UNTIL causes an endless loop, if the
looping condition is satisfied by the REPEAT VARYING/LINKING
preceding it.

arithmeticexpression A legal arithmetic relation-condition

indexexpression Format can be:

literal
Identifier +|- literal
indexname

identifier2 Names a table entry, such as a data name with
an OCCURS clause
Reference

REPEAT 385

rfpubb.book Page 385 Tuesday, February 19, 2002 9:56 AM
• In the following format, APS tests the condition after the REPEAT
statementblock1 executes.

REPEAT
 statementblock
UNTIL condition
 statementblock3

Be careful using this format for reading records--it can read the last
record twice.

• In the following format, APS tests the condition after the REPEAT
statementblock1 executes, but before the UNTIL statementblock2
executes. When the UNTIL condition is true, the UNTIL
statemenblock2 does not execute.

REPEAT
 statementblock
UNTIL condition
 statementblock

 statementblock3

• DOWN is generally used if literal or identifier2 is negative at
execution, and used if positive. The loop executes until
UNTIL indexname identifier1 < arithmeticexpression2

• With the TO option, the loop executes to, but not including, the
stop-point. With the THRU option, the loop executes through and
including the stop-point.

Comments: • If FROM is not coded, the default is the value of indexname or
identifier1 at the time of execution.

• If BY is not coded, the default is BY 1 (or -1, if DOWN TO/THRU is
coded).

• APS initializes the index or identifier is immediately before the
REPEAT loop begins and increments it each time the loop repeats,
immediately before the statement block repeats.

• For the identifier to be treated as an index, the indexed data
element structure must be present in the program during APS
precompilation, otherwise subscript processing is assumed.

• To copy data containing an indexed structure, use the % INCLUDE
statement.
Reference

386

rfpubb.book Page 386 Tuesday, February 19, 2002 9:56 AM
Examples: Read header records from a file, move the relevant data to a table, and
then print the table.

-LINE- -KYWD- 12-*----20---*----30---*----40---*----50---*---
002010 NTRY
002020 LINE-SUB = 1
002030 PRINT-TABLE = SPACES
002040 OPEN INPUT INPUT-FILE
002050 ... OUTPUT PRINT-FILE
002070 /* BEGIN FIRST LOOP
002080 REPEAT
002090 READ INPUT-FILE
002100 UNTIL AT END ON INPUT-FILE
002110 IF REC-TYPE = ’HDR’
002120 WORK-FIELD = INPUT-DATA
002130 IF WORK-FIELD NOT = SPACES
002140 COLUMN-SUB = 0
002150 /* BEGIN SECOND LOOP
002160 REPEAT
002170 COLUMN-SUB = COLUMN-SUB + 1
002180 PRINT-COL (LINE-SUB, COLUMN-SUB) =
002190 ... WORK-FIELD-CHAR (COLUMN-SUB)
002200 UNTIL COLUMN-SUB = COLUMN-SUB-LIMIT
002210 ... OR WORK-FIELD-CHAR (COLUMN-SUB) =
002211 ... ’/’
002220 /* END OF SECOND LOOP
002230 LINE-SUB = LINE-SUB + 1
002240 /* END OF FIRST LOOP
002250
002260 PERFORM WRITE-PRINT-TABLE
002270 CLOSE INPUT-FILE PRINT-FILE
002280
002290 PARA WRITE-PRINT-TABLE
002300 LINE-SUB = 1
002310 WHILE PRINT-LINE (LINE-SUB) NOT = SPACES
002320 ... AND LINE-SUB NOT > LINE-SUB-LIMIT
002330 WRITE PRINT-REC FROM PRINT-LINE (LINE-SUB)
002340 LINE-SUB = LINE-SUB + 1

Perform the same function as the second loop in the preceding
example, but use VARYING to set and increment COLUMN-SUB.

12-*----20---*----30---*----40---*----50---*----
 IF WORK-FIELD NOT = SPACES
 REPEAT VARYING COLUMN-SUB FROM 1 BY 1
 PRINT-COL (LINE-SUB, COLUMN-SUB) =
 ... WORK-FIELD-CHAR (COLUMN-SUB)
Reference

REPEAT 387

rfpubb.book Page 387 Tuesday, February 19, 2002 9:56 AM
 UNTIL COLUMN-SUB = COLUMN-SUB-LIMIT
 ... OR WORK-FIELD-CHAR (COLUMN-SUB) = ’/’
 LINE-SUB = LINE-SUB + 1

Use REPEAT ... VARYING to move data items in diagonal sequence
(upper right to lower left) from a two-dimensional table to a one-
dimensional table. Terminate the loop when after DOWN THRU.

12-*----20---*----30---*----40---*----50---*----
 REPEAT VARYING ROW-SUB FROM 1 BY 1
 ... VARYING COLUMN-SUB FROM 5 DOWN THRU 1
 X-FIELD (ROW-SUB) =
 ... TABLE-ELEMENT (ROW-SUB, COLUMN-SUB)

Use II as the pointer, MY-CHAIN for the initial setting, BLOCK-LINK for
the linking element in the table, and ZERO to establish when to stop.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 .
 01 BLOCK-STRUCTURE.
 02 BLOCK OCCURS 250 TIMES.
 03 BLOCK-LINK PIC S9(9) COMP SYNC.
 03 BLOCK-DATA PIC X(20).
 .
 NTRY
 REPEAT LINKING II FROM MY-CHAIN
 ... BY BLOCK-LINK TO ZERO
 PERFORM PASS-DATA(BLOCK-DATA (II))
 .
 PARA PASS-DATA(+PASS-DATA-BLOCK)
 .

Generated COBOL code:

 MOVE MY-CHAIN TO II.
 GO TO G--002.
G--001.
 MOVE BLOCK-LINK (II) TO II.
G--002.
 IF II NOT = ZERO
 MOVE BLOCK-DATA (II) TO PASS-DATA-BLOCK
 PERFORM PASS-DATA THRU PASS-DATA--XIT
 GO TO G--001.

APS uses SET in the generated code if the subscript is an index;
otherwise, APS uses MOVE as shown above.
Reference

388

rfpubb.book Page 388 Tuesday, February 19, 2002 9:56 AM
Report Mock-Ups

Category: Report layout associated with Report Writer program

Description: Paint report layouts, called mock-ups, in the Report Painter. Define the
mock-up by typing literals and output fields to visually represent the
report output. Specify the following COBOL and COBOL/2 output edit
masks directly within the report mock-up:

• Floating numeric formats

• Alphanumeric formats

Mock-Up Rules: • Paint the mock-up in columns 1 to 247.

• Paint lines as they appear within their report group.

• Include any blank lines that appear between the first and last lines
of a report group in the mock-up.

• To minimize programming, include blank lines preceding or
following a report group in the mock-up.

• Paint the line or lines that compose a DETAIL group only once.

• Each field that composes a line must be shown with a COBOL
picture for variable data or with the literal for fixed data.

• Within the layout of a line, position each field in the desired
printing position with exact spacing between fields.

• All COBOL picture characters are available for output fields except
A, which is considered a literal character anywhere in the mock-up.

• APS considers a string of hyphens a literal because of its frequent
use for underlining.

• APS considers any single COBOL picture character, that is preceded
and followed by a space, a literal. Exception to this rule: 9 and X.

• APS considers a single COBOL picture character, such as -, X, Z, or 9,
that is embedded in a string of non-blank, non-picture characters as
part of a literal. For example, the following are literals:

1979
WXYZ
Reference

Report Sample Program and Mock-Up 389

rfpubb.book Page 389 Tuesday, February 19, 2002 9:56 AM
EXTRA
WIZARD

and the following are pictures beside literals:

#99 Literal is #, PIC is 99.
l999 Literal is l, PIC is 999.
Section-999 Literal is SECTION, PIC is -999.

• Show a floating-point item in the mock-up with a COBOL picture in
floating-point form. The same picture must be repeated in a PIC
phrase in the corresponding SOURCE, SUM, or VALUE statement.

• Use PIC clauses instead of COBOL masks when formatting dates and
times containing / $ or :.

Example:

Report Sample Program and Mock-Up

Category: Report Writer program and Report Painter mock-up

Description: Illustrate Report Writer structures and the use of iterative expressions.
Reference

390

rfpubb.book Page 390 Tuesday, February 19, 2002 9:56 AM
Report Mock-Up:

==
 EGAS,INC.

 XXXX YEAR-END PRODUCT SALES SUMMARY

 **

 PAGEZZZZ9

 REGION: XXXXXXXXX
 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 ----- 1-ST QUARTER ----- ----- 2-ND QUARTER ----- ----- 3-RD QUARTER ----- ----- 4-TH QUARTER -----
 PRODUCT JAN FEB MAR TOTAL APR MAY JUN TOTAL JUL AUG SEP TOTAL OCT NOV DEC TOTAL TOTAL
------------------ ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ --------

SALES OFFICE: XXXXXXXXXXXXXXX
MANAGER: XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 $$$$,$$$

TOTAL FOR: ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ --------
 XXXXXXXXXXXXXXXX Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 $$$$,$$$

TOTAL FOR: ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ --------
 XXXXXXXXX Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 $$$$,$$$

 ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ ----- ----- ----- ------ --------
TOTAL Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 Z,ZZ9 Z,ZZ9 Z,ZZ9 ZZ,ZZ9 $$$$,$$$

 EGAS! BUY FROM EGAS!

 **

 EGAS! ANOTHERBANNER YEAR!
==

Program Painter Source:

REM READS DATA.EXTRACT AND GENERATES A SUMMARY
 REPORT BY REGION, OFFICE AND PRODUCT.
IO EXTRACT-FILE ASSIGN TO UT-S-EXTRACT
IO SALES-SUMMARY-FILE ASSIGN TO UT-S-SUMMREPT
IO DEFINITION-FILE ASSIGN TO UT-S-DEFS
FD EXTRACT-FILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
 RECORD CONTAINS 90 CHARACTERS
 BLOCK CONTAINS 0 RECORDS.

01 EXTRACT-FILE-RECORD
 02 EXT-REGION PIC X(9).
 02 EXT-OFFICE PIC X(15).
 02 EXT-PRODUCT PIC X(18).
 02 EXT-SALES-DOLLARS PIC 9(4) OCCURS 12.

FD SALES-SUMMARY-FILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
Reference

Report Sample Program and Mock-Up 391

rfpubb.book Page 391 Tuesday, February 19, 2002 9:56 AM
 RECORD CONTAINS 133 CHARACTERS
 BLOCK CONTAINS 0 RECORDS
 REPORT IS YEAR-END-SALES-SUMMARY.

FD DEFINITION-FILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
 RECORD CONTAINS 38 CHARACTERS
 BLOCK CONTAINS 0 RECORDS.

01 DEFINITION-RECORD.
 02 DEFINITION-TYPE PIC X(3).
 02 DEFINITION-REGION PIC X(29).
 02 FILLER PIC X(6).

01 DEFINITION-RECORD-2.
 02 FILLER PIC X(3).
 02 DEFINITION-OFFICE PIC X(35).

WS01 JJ PIC S9(4) COMP SYNC VALUE ZERO.
WS01 II PIC S9(4) COMP SYNC VALUE ZERO.
WS01 FIRST-FLG PIC X(1) VALUE ’T’.

WS01 REGION-DEFINITIONS.
 02 REGION-TABLE OCCURS 4 TIMES INDEXED BY REGION-IDX.
 03 REGION-NAME PIC X(9).
 03 REGION-MANAGER PIC X(20).

WS01 REGION PIC X(9).
WS01 REGION-MGR.
 02 REG-MGR OCCURS 20 TIMES
 INDEXED BY REG-MGR-IDX
 PIC X(1).

WS01 REG-MGR-MAX PIC S9(4) COMP SYNC VALUE +20.
WS01 REGION-MGR-FIELD.
 02 REGION-MGR-X OCCURS 30 TIMES INDEXED BY MGR-IDX
 PIC X(1).
WS01 REGION-MGR-FLD REDEFINES REGION-MGR-FIELD
 PIC X(30).
WS01 REGION-MGR-MAX PIC S9(4) COMP SYNC VALUE +30.
WS01 MANAGER-WORD PIC X(10) VALUE ’MANAGER: ’.
WS01 MANAGER-BY-CHAR REDEFINES MANAGER-WORD.
 02 MANAGER-LETTER OCCURS 10 TIMES
 INDEXED BY LETTER-IDX
 PIC X(1).
WS01 MANAGER-WORD-SIZE PIC S9(4) COMP SYNC VALUE +10.

Reference

392

rfpubb.book Page 392 Tuesday, February 19, 2002 9:56 AM
WS01 OFFICE-DEFINITIONS.
 02 OFFICE-TABLE OCCURS 14 TIMES INDEXED BY OFFICE-IDX.
 03 OFFICE-NAME PIC X(15).
 03 OFFICE-MANAGER PIC X(20).

WS01 OFFICE PIC X(15).
WS01 OFFICE-MGR PIC X(20).

WS01 QTR-1-SALES-DOLLARS PIC 9(5) VALUE ZERO.
WS01 QTR-2-SALES-DOLLARS PIC 9(5) VALUE ZERO.
WS01 QTR-3-SALES-DOLLARS PIC 9(5) VALUE ZERO.
WS01 QTR-4-SALES-DOLLARS PIC 9(5) VALUE ZERO.

WS01 YR-SALES-DOLLARS PIC 9(6) VALUE ZERO.
WS01 CURRENT-DATE-X.
 02 CURRENT-YEAR PIC 9(2).
 02 FILLER PIC X(4).

WS01 REPORT-YEAR.
 02 FILLER PIC 9(2) VALUE 19.
 02 REPORT-YEAR-X PIC 9(2).

RED YEAR-END-SALES-SUMMARY
 CONTROLS ARE FINAL REGION REGION-MGR-FLD OFFICE
 PAGE LIMIT IS 58 LINES
 FIRST DETAIL 9
 HEADING 1
 FOOTING 58.

MOCK SUMMARY

01 RH-YEAR-END-SALES-SUMMARY TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE.
 MOCKUP LINES 1 THRU 4
 LINE 25
 SOURCE REPORT-YEAR PIC X(4).

01 PH-YEAR-END-SALES-SUMMARY TYPE IS PAGE HEADING.
 MOCKUP LINES 10 THRU 17
 SOURCE PAGE-COUNTER PIC ZZZZ9.
 SOURCE REGION PIC X(9).
 SOURCE REGION-MGR-FLD PIC X(30).

01 CH-REGION TYPE IS CONTROL HEADING
 REGION
 NEXT GROUP IS NEXT PAGE.

Reference

Report Sample Program and Mock-Up 393

rfpubb.book Page 393 Tuesday, February 19, 2002 9:56 AM
01 CH-OFFICE TYPE IS CONTROL HEADING
 OFFICE.
 MOCKUP LINES 18 THRU 20
 SOURCE OFFICE PIC X(15).
 SOURCE OFFICE-MGR PIC X(20).

01 DE-YEAR-END-SALES-SUMMARY TYPE IS DETAIL.
 MOCKUP LINE 21
 SOURCE EXT-PRODUCT PIC X(8).
 SOURCE EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
 SOURCE QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
 SOURCE EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
 SOURCE QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
 SOURCE EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
 SOURCE QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
 SOURCE EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
 SOURCE QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
 SOURCE YR-SALES-DOLLARS PIC $$$$,$$$

01 PF-YEAR-END-SALES-SUMMARY TYPE IS PAGE FOOTING
 NEXT GROUP IS NEXT PAGE.
 MOCKUP LINE 32

01 RF-YEAR-END-SALES-SUMMARY TYPE IS REPORT FOOTING.
 MOCKUP LINE 38
 LINE IS 25

01 CF-FINAL TYPE IS CONTROL FOOTING
 FINAL.
 MOCKUP LINES 29 THRU 31
 SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
 SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
 SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
 SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
 SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
 SUM YR-SALES-DOLLARS PIC $$$$,$$$

01 CF-REGION TYPE IS CONTROL FOOTING
 REGION.
 MOCKUP LINES 26 THRU 28
 SOURCE REGION PIC X(9)
 SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
 SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
 SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
Reference

394

rfpubb.book Page 394 Tuesday, February 19, 2002 9:56 AM
 SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
 SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
 SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
 SUM YR-SALES-DOLLARS PIC $$$$,$$$

01 CF-OFFICE TYPE IS CONTROL FOOTING
 OFFICE.
 MOCKUP LINES 23 THRU 25
 SOURCE OFFICE PIC X(15)
 SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
 SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
 SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
 SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
 SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
 SUM YR-SALES-DOLLARS PIC $$$$,$$$

DPAR SUPPRESS CH-REGION SECTION
 USE BEFORE REPORTING CH-REGION
DPAR SUPPRESS CH-REGION-PARA
 IF FIRST-FLG = TRUE
 SUPPRESS PRINTING

PROC
 ACCEPT CURRENT-DATE-X FROM DATE
 MOVE CURRENT-YEAR TO REPORT-YEAR-X

 PERFORM LOAD-DEFINITIONS

 OPEN INPUT EXTRACT-FILE
 OPEN OUTPUT SALES-SUMMARY-FILE

 INITIATE YEAR-END-SALES-SUMMARY
 MOVE ZERO TO PAGE-COUNTER

 REPEAT
 READ EXTRACT-FILE
 UNTIL AT END ON EXTRACT-FILE
 IF EXT-OFFICE NOT = OFFICE
 PERFORM LOCATE-MANAGERS

 ADD EXT-SALES-DOLLARS (1) TO QTR-1-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (2) TO QTR-1-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (3) TO QTR-1-SALES-DOLLARS

Reference

Report Sample Program and Mock-Up 395

rfpubb.book Page 395 Tuesday, February 19, 2002 9:56 AM
 ADD EXT-SALES-DOLLARS (4) TO QTR-2-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (5) TO QTR-2-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (6) TO QTR-2-SALES-DOLLARS

 ADD EXT-SALES-DOLLARS (7) TO QTR-3-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (8) TO QTR-3-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (9) TO QTR-3-SALES-DOLLARS

 ADD EXT-SALES-DOLLARS (10) TO QTR-4-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (11) TO QTR-4-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (12) TO QTR-4-SALES-DOLLARS

 REPEAT VARYING II FROM 1 BY 1
 UNTIL II > 12
 ADD EXT-SALES-DOLLARS (II) TO YR-SALES-DOLLARS

 GENERATE DE-YEAR-END-SALES-SUMMARY

 MOVE FALSE TO FIRST-FLG

 MOVE ZEROES TO QTR-1-SALES-DOLLARS
 ... QTR-2-SALES-DOLLARS QTR-3-SALES-DOLLARS
 ... QTR-4-SALES-DOLLARS YR-SALES-DOLLARS

 TERMINATE YEAR-END-SALES-SUMMARY

 CLOSE EXTRACT-FILE SALES-SUMMARY-FILE

PARA LOAD-DEFINITIONS.
 SET REGION-IDX TO 1
 SET REGION-IDX DOWN BY 1
 SET OFFICE-IDX TO 1
 SET OFFICE-IDX DOWN BY 1

 OPEN INPUT DEFINITION-FILE

 REPEAT
 READ DEFINITION-FILE
 UNTIL AT END ON DEFINITION-FILE

 IF DEFINITION-TYPE = ’REG’
 SET REGION-IDX UP BY 1
 MOVE DEFINITION-REGION
 TO REGION-TABLE (REGION-IDX)

 ELSE-IF DEFINITION-TYPE = ’OFF’
Reference

396

rfpubb.book Page 396 Tuesday, February 19, 2002 9:56 AM
 SET OFFICE-IDX UP BY 1
 MOVE DEFINITION-OFFICE
 TO OFFICE-TABLE (OFFICE-IDX)

 CLOSE DEFINITION-FILE

PARA LOCATE-MANAGERS.
 SET REGION-IDX TO 1
 SEARCH REGION-TABLE
 WHEN EXT-REGION = REGION-NAME (REGION-IDX)
 MOVE REGION-MANAGER (REGION-IDX) TO REGION-MGR
 MOVE SPACES TO REGION-MGR-FLD

 SET REG-MGR-IDX TO REG-MGR-MAX
 WHILE REG-MGR (REG-MGR-IDX) = SPACE
 ... AND REG-MGR-IDX > ZERO
 SET REG-MGR-IDX DOWN BY 1
 SET JJ TO REG-MGR-IDX

 COMPUTE II =
 ... (REGION-MGR-MAX - MANAGER-WORD-SIZE - JJ) / 2
 ADD 1 TO II

 IF II <= ZERO
 MOVE 1 TO II
 SET REG-MGR-IDX TO 1
 SET LETTER-IDX TO 1

 REPEAT VARYING MGR-IDX FROM II BY 1
 UNTIL MGR-IDX > REGION-MGR-MAX
 IF LETTER-IDX <= MANAGER-WORD-SIZE
 MOVE MANAGER-LETTER (LETTER-IDX)
 ... TO REGION-MGR-X (MGR-IDX)
 SET LETTER-IDX UP BY 1
 ELSE-IF REG-MGR-IDX <= REG-MGR-MAX
 MOVE REG-MGR (REG-MGR-IDX)
 ... TO REGION-MGR-X (MGR-IDX)
 SET REG-MGR-IDX UP BY 1
 ELSE
 SET MGR-IDX TO REGION-MGR-MAX
 DISPLAY ’MANAGER INDEXES OUT OF RANGE: ’
 ... EXTRACT-FILE-RECORD

 SET OFFICE-IDX TO 1
 SEARCH OFFICE-TABLE
 WHEN EXT-OFFICE = OFFICE-NAME (OFFICE-IDX)
 MOVE OFFICE-MANAGER (OFFICE-IDX) TO OFFICE-MGR

Reference

Report Sample Program and Mock-Up 397

rfpubb.book Page 397 Tuesday, February 19, 2002 9:56 AM
 MOVE EXT-REGION TO REGION
 MOVE EXT-OFFICE TO OFFICE

Generated Source:

% &AP-GEN-VER = 1719
% &AP-PGM-ID = "SUMMARY"
% &AP-GEN-DC-TARGET = "MVS"
% &AP-GEN-DB-TARGET = "VSAM"
% &AP-PROC-DIV-KYWD-SEEN = 1
% &AP-FILE-CONTROL-SEEN = 1
% &AP-SUBSCHEMA = ""
% &AP-APPLICATION-ID = "GLGAP"
% &AP-GEN-DATE = "861204"
% &AP-GEN-TIME = "17142491"

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMMARY.
AUTHOR. AP-SYSTEM GENERATED.
DATE-WRITTEN. 861204.
DATE-COMPILED. &COMPILETIME.
*
*REMARKS.
* READS DATA.EXTRACT AND GENERATES A SUMMARY
* REPORT BY REGION, OFFICE AND PRODUCT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. &SYSTEM.
OBJECT-COMPUTER. &SYSTEM.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EXTRACT-FILE ASSIGN TO UT-S-EXTRACT.
 SELECT SALES-SUMMARY-FILE ASSIGN TO UT-S-SUMMREPT.
 SELECT DEFINITION-FILE ASSIGN TO UT-S-DEFS.

DATA DIVISION.

FILE SECTION.

FD EXTRACT-FILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
 RECORD CONTAINS 90 CHARACTERS
 BLOCK CONTAINS 0 RECORDS.
Reference

398

rfpubb.book Page 398 Tuesday, February 19, 2002 9:56 AM

01 EXTRACT-FILE-RECORD
 02 EXT-REGION PIC X(9).
 02 EXT-OFFICE PIC X(15).
 02 EXT-PRODUCT PIC X(18).
 02 EXT-SALES-DOLLARS PIC 9(4) OCCURS 12.

FD SALES-SUMMARY-FILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
 RECORD CONTAINS 133 CHARACTERS
 BLOCK CONTAINS 0 RECORDS
 REPORT IS YEAR-END-SALES-SUMMARY.

FD DEFINITION-FILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
 RECORD CONTAINS 38 CHARACTERS
 BLOCK CONTAINS 0 RECORDS.

01 DEFINITION-RECORD.
 02 DEFINITION-TYPE PIC X(3).
 02 DEFINITION-REGION PIC X(29).
 02 FILLER PIC X(6).

01 DEFINITION-RECORD-2.
 02 FILLER PIC X(3).
 02 DEFINITION-OFFICE PIC X(35).

WORKING-STORAGE SECTION.
$TP-WS-MARKER
01 JJ PIC S9(4) COMP SYNC VALUE ZERO.
01 II PIC S9(4) COMP SYNC VALUE ZERO.
01 FIRST-FLG PIC X(1) VALUE ’T’.

01 REGION-DEFINITIONS.
 02 REGION-TABLE OCCURS 4 TIMES INDEXED BY REGION-IDX.
 03 REGION-NAME PIC X(9).
 03 REGION-MANAGER PIC X(20).

01 REGION PIC X(9).
01 REGION-MGR.
 02 REG-MGR OCCURS 20 TIMES
 INDEXED BY REG-MGR-IDX
 PIC X(1).

01 REG-MGR-MAX PIC S9(4) COMP SYNC VALUE +20.
Reference

Report Sample Program and Mock-Up 399

rfpubb.book Page 399 Tuesday, February 19, 2002 9:56 AM
01 REGION-MGR-FIELD.
 02 REGION-MGR-X OCCURS 30 TIMES INDEXED BY MGR-IDX
 PIC X(1).
01 REGION-MGR-FLD REDEFINES REGION-MGR-FIELD
 PIC X(30).
01 REGION-MGR-MAX PIC S9(4) COMP SYNC VALUE +30.
01 MANAGER-WORD PIC X(10) VALUE ’MANAGER: ’.
01 MANAGER-BY-CHAR REDEFINES MANAGER-WORD.
 02 MANAGER-LETTER OCCURS 10 TIMES
 INDEXED BY LETTER-IDX
 PIC X(1).
1 MANAGER-WORD-SIZE PIC S9(4) COMP SYNC VALUE +10.

01 OFFICE-DEFINITIONS.
 02 OFFICE-TABLE OCCURS 14 TIMES INDEXED BY OFFICE-IDX.
 03 OFFICE-NAME PIC X(15).
 03 OFFICE-MANAGER PIC X(20).

01 OFFICE PIC X(15).
01 OFFICE-MGR PIC X(20).

01 QTR-1-SALES-DOLLARS PIC 9(5) VALUE ZERO.
01 QTR-2-SALES-DOLLARS PIC 9(5) VALUE ZERO.
01 QTR-3-SALES-DOLLARS PIC 9(5) VALUE ZERO.
01 QTR-4-SALES-DOLLARS PIC 9(5) VALUE ZERO.

01 YR-SALES-DOLLARS PIC 9(6) VALUE ZERO.
01 CURRENT-DATE-X.
 02 CURRENT-YEAR PIC 9(2).
 02 FILLER PIC X(4).

01 REPORT-YEAR.
 02 FILLER PIC 9(2) VALUE 19.
 02 REPORT-YEAR-X PIC 9(2).

REPORT SECTION.
RED YEAR-END-SALES-SUMMARY
 CONTROLS ARE FINAL REGION REGION-MGR-FLD OFFICE
 PAGE LIMIT IS 58 LINES
 FIRST DETAIL 9
 HEADING 1
 FOOTING 58.

01 RH-YEAR-END-SALES-SUMMARY TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE.
MOCKUP LINES 1 THRU 4
LINE 25
SOURCE REPORT-YEAR PIC X(4).
Reference

400

rfpubb.book Page 400 Tuesday, February 19, 2002 9:56 AM

01 PH-YEAR-END-SALES-SUMMARY TYPE IS PAGE HEADING.
MOCKUP LINES 10 THRU 17
SOURCE PAGE-COUNTER PIC ZZZZ9.
SOURCE REGION PIC X(9).
SOURCE REGION-MGR-FLD PIC X(30).

01 CH-REGION TYPE IS CONTROL HEADING
 REGION
 NEXT GROUP IS NEXT PAGE.

01 CH-OFFICE TYPE IS CONTROL HEADING
 OFFICE.
MOCKUP LINES 18 THRU 20
SOURCE OFFICE PIC X(15).
SOURCE OFFICE-MGR PIC X(20).

01 DE-YEAR-END-SALES-SUMMARY TYPE IS DETAIL.
MOCKUP LINE 21
SOURCE EXT-PRODUCT PIC X(8).
SOURCE EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
SOURCE QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
SOURCE EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
SOURCE QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
SOURCE EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
SOURCE QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
SOURCE EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
SOURCE QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
SOURCE YR-SALES-DOLLARS PIC $$$$,$$$
01 PF-YEAR-END-SALES-SUMMARY TYPE IS PAGE FOOTING
 NEXT GROUP IS NEXT PAGE.
MOCKUP LINE 32
01 RF-YEAR-END-SALES-SUMMARY TYPE IS REPORT FOOTING.
MOCKUP LINE 38
LINE IS 25
01 CF-FINAL TYPE IS CONTROL FOOTING
 FINAL.
MOCKUP LINES 29 THRU 31
SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
SUM YR-SALES-DOLLARS PIC $$$$,$$$

Reference

Report Sample Program and Mock-Up 401

rfpubb.book Page 401 Tuesday, February 19, 2002 9:56 AM
01 CF-REGION TYPE IS CONTROL FOOTING
 REGION.
MOCKUP LINES 26 THRU 28
SOURCE REGION PIC X(9)
SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9

SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
SUM YR-SALES-DOLLARS PIC $$$$,$$$

01 CF-OFFICE TYPE IS CONTROL FOOTING
 OFFICE.
MOCKUP LINES 23 THRU 25
SOURCE OFFICE PIC X(15)
SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
SUM YR-SALES-DOLLARS PIC $$$$,$$$

PROCEDURE DIVISION.

DECLARATIVES.

SUPPRESS CH-REGION SECTION.
 USE BEFORE REPORTING CH-REGION

SUPPRESS CH-REGION-PARA.
 IF FIRST-FLG = TRUE
 SUPPRESS PRINTING

END DECLARATIVES.
 ACCEPT CURRENT-DATE-X FROM DATE
 MOVE CURRENT-YEAR TO REPORT-YEAR-X

 PERFORM LOAD-DEFINITIONS
Reference

402

rfpubb.book Page 402 Tuesday, February 19, 2002 9:56 AM

 OPEN INPUT EXTRACT-FILE
 OPEN OUTPUT SALES-SUMMARY-FILE

 INITIATE YEAR-END-SALES-SUMMARY
 MOVE ZERO TO PAGE-COUNTER

 REPEAT
 READ EXTRACT-FILE
 UNTIL AT END ON EXTRACT-FILE
 IF EXT-OFFICE NOT = OFFICE
 PERFORM LOCATE-MANAGERS

 ADD EXT-SALES-DOLLARS (1) TO QTR-1-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (2) TO QTR-1-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (3) TO QTR-1-SALES-DOLLARS

 ADD EXT-SALES-DOLLARS (4) TO QTR-2-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (5) TO QTR-2-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (6) TO QTR-2-SALES-DOLLARS

 ADD EXT-SALES-DOLLARS (7) TO QTR-3-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (8) TO QTR-3-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (9) TO QTR-3-SALES-DOLLARS

 ADD EXT-SALES-DOLLARS (10) TO QTR-4-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (11) TO QTR-4-SALES-DOLLARS
 ADD EXT-SALES-DOLLARS (12) TO QTR-4-SALES-DOLLARS

 REPEAT VARYING II FROM 1 BY 1
 UNTIL II > 12
 ADD EXT-SALES-DOLLARS (II) TO YR-SALES-DOLLARS

 GENERATE DE-YEAR-END-SALES-SUMMARY

 MOVE FALSE TO FIRST-FLG

 MOVE ZEROES TO QTR-1-SALES-DOLLARS
 ... QTR-2-SALES-DOLLARS QTR-3-SALES-DOLLARS
 ... QTR-4-SALES-DOLLARS YR-SALES-DOLLARS

 TERMINATE YEAR-END-SALES-SUMMARY

 CLOSE EXTRACT-FILE SALES-SUMMARY-FILE

LOAD-DEFINITIONS.
 SET REGION-IDX TO 1
Reference

Report Sample Program and Mock-Up 403

rfpubb.book Page 403 Tuesday, February 19, 2002 9:56 AM
 SET REGION-IDX DOWN BY 1
 SET OFFICE-IDX TO 1
 SET OFFICE-IDX DOWN BY 1

 OPEN INPUT DEFINITION-FILE

 REPEAT
 READ DEFINITION-FILE
 UNTIL AT END ON DEFINITION-FILE

 IF DEFINITION-TYPE = ’REG’
 SET REGION-IDX UP BY 1
 MOVE DEFINITION-REGION
 TO REGION-TABLE (REGION-IDX)

 ELSE-IF DEFINITION-TYPE = ’OFF’
 SET OFFICE-IDX UP BY 1
 MOVE DEFINITION-OFFICE
 TO OFFICE-TABLE (OFFICE-IDX)

 CLOSE DEFINITION-FILE

LOCATE-MANAGERS.
 SET REGION-IDX TO 1
 SEARCH REGION-TABLE
 WHEN EXT-REGION = REGION-NAME (REGION-IDX)
 MOVE REGION-MANAGER (REGION-IDX) TO REGION-MGR
 MOVE SPACES TO REGION-MGR-FLD

 SET REG-MGR-IDX TO REG-MGR-MAX
 WHILE REG-MGR (REG-MGR-IDX) = SPACE
 ... AND REG-MGR-IDX > ZERO
 SET REG-MGR-IDX DOWN BY 1
 SET JJ TO REG-MGR-IDX

 COMPUTE II =
 ... (REGION-MGR-MAX - MANAGER-WORD-SIZE - JJ) / 2
 ADD 1 TO II

 IF II <= ZERO
 MOVE 1 TO II
 SET REG-MGR-IDX TO 1
 SET LETTER-IDX TO 1

 REPEAT VARYING MGR-IDX FROM II BY 1
 UNTIL MGR-IDX > REGION-MGR-MAX
 IF LETTER-IDX <= MANAGER-WORD-SIZE
Reference

404

rfpubb.book Page 404 Tuesday, February 19, 2002 9:56 AM
 MOVE MANAGER-LETTER (LETTER-IDX)
 ... TO REGION-MGR-X (MGR-IDX)
 SET LETTER-IDX UP BY 1
 ELSE-IF REG-MGR-IDX <= REG-MGR-MAX
 MOVE REG-MGR (REG-MGR-IDX)
 ... TO REGION-MGR-X (MGR-IDX)
 SET REG-MGR-IDX UP BY 1
 ELSE
 SET MGR-IDX TO REGION-MGR-MAX
 DISPLAY ’MANAGER INDEXES OUT OF RANGE: ’
 ... EXTRACT-FILE-RECORD

 SET OFFICE-IDX TO 1
 SEARCH OFFICE-TABLE
 WHEN EXT-OFFICE = OFFICE-NAME (OFFICE-IDX)
 MOVE OFFICE-MANAGER (OFFICE-IDX) TO OFFICE-MGR

 MOVE EXT-REGION TO REGION
 MOVE EXT-OFFICE TO OFFICE

Report Writer Structures

Description: After you paint your report mock-up in the Report Painter, you must use
APS Report Writer structures to code report logic. These structures let
you automatically page the report, define headers and footers,
calculate field values, test and execute control and page breaks,
generate multiple reports, and generate all logic necessary to map
fields between reports and databases or files.

Code Report Writer structures in the Program Painter for report
programs.

List of Structures: IO and FD Name the input and output files.

RED Add a Report Section to your program.

CODE Specify a 2-character literal that identifies
each print line with a specific report.

CONTROL Identify data items that cause control breaks.

WRITE ROUTINE Override a standard COBOL WRITE statement
and execute your own routine.
Reference

Report Writer Structures 405

rfpubb.book Page 405 Tuesday, February 19, 2002 9:56 AM
Syntax Rules: Code Report Writer structures in the Program Painter, associating the
structures with keywords, as shown in the sample skeletal Report Writer
program below.

-KYWD- 12-*----20---*----30---*----40---*----50
 IO Input/Output statements
 .
 .
 FD Input FD clause
 .
 .

PAGE LIMIT Define the report format, such as the number
of lines per page and where report lines
appear on the page.

MOCK Identify the report mock-up.

01 and TYPE Describe function, format, and characteristics
of each report line.

MOCKUP LINES Map the report mock-up lines to the lines on
the printed report.

OVERPRINT Highlight or underscore the lines identified
in the MOCKUP LINES clause.

SOURCE Map the report mock-up fields to the output
fields on the printed report.

VALUE (Report Writer) Designate a literal value to print for the field
each time the line prints.

REFERENCE Identify a non-printing data field for
summing in a control break.

SUM Establish a sum accumulator for a
corresponding SOURCE or REFERENCE data
field, and print the total in a control break.

INITIATE Generate multiple SOURCE and SUM
statements for suffixed data items or array
elements with minimal coding.

GENERATE Open report files and initialize page, line,
and sum counters and accumulators.

USE BEFORE REPORTING Generate and print all the report lines.

TERMINATE Specify additional processing for a report
group prior to printing.
Reference

406

rfpubb.book Page 406 Tuesday, February 19, 2002 9:56 AM
 01 Input record description

 FD Output FD clause
 . . .
 01 Output record description

 RED reportfilename
 CODE clause
 CONTROL clause
 WRITE ROUTINE clause
 PAGE LIMIT nn LINE
 FIRST DETAIL linenumber
 LAST DETAIL linenumber
 FOOTING linenumber.

 mock mockupreportname

 01 TYPE IS REPORT HEADING /*for report header
 MOCKUP LINES clause
 OVERPRINT clause
 SOURCE clause or VALUE clause

 01 TYPE PAGE HEADING /*for page header
 MOCKUP LINES clause
 SOURCE clause or VALUE clause

 01 TYPE CONTROL HEADING /*for control header
 MOCKUP LINES clause
 SOURCE clause or VALUE clause

 01 TYPE DETAIL /*for detail lines
 MOCKUP LINES clause
 SOURCE clause or VALUE clause
 REFERENCE clause

 01 TYPE CONTROL FOOTING /*for control break
 MOCKUP clause
 SOURCE clause or VALUE clause
 SUM clause

 NTRY
 .
 INITIATE statement
 .
 GENERATE statement
 .
 TERMINATE statement
 .
Reference

Reports, Application-Generated 407

rfpubb.book Page 407 Tuesday, February 19, 2002 9:56 AM
Reports, Application-Generated

Description: APS provides a set of reports that help you understand your application
and its various components. Use these reports as you develop an
application to determine the status of your work and the tasks left to
complete. Some reports help you to troubleshoot problems in an
application that you are developing, or to determine the impact of a
proposed change. Others help you to verify the results of your work.
Once you have fully implemented an application, use the APS reports to
document it so that developers who later maintain or enhance the
application can easily understand it in detail.

You can produce reports on an entire application, on selected
components, or on selected members of components. You can produce
reports from the Report Generator, Painter Menu, Application Painter,
or Documentation Facility, as follows:

List of Reports: Report Available In

Application Definition (AP01) lists and describes
all components of an application except the
scenario prototype.

Painter Menu
Application Painter
Report Generator

Component List (MS01) catalogs and totals the
components for each painter.

Documentation Facility

Data Structure Definition (DS01) lists and
describes structures that you create in the Data
Structure Painter.

Painter Menu
Application Painter
Report Generator

DDIFILE (DB01) describes the contents of the file
that contains information about your database,
formatted to APS specifications.

Documentation Facility

Entity Content (MS02) lists summary
information for each application component.

Documentation Facility

Entity Cross Reference (MD01) cross references
and totals application components.

Documentation Facility

Entity Parts List (EN01) catalogs selected parts of
one or more application components.

Documentation Facility
Reference

408

rfpubb.book Page 408 Tuesday, February 19, 2002 9:56 AM
See these individual report descriptions for details about the content
and format of the information provided.

Entity Search Utility (GS01) lets you create
reports on application components that meet
the selection criteria that you specify.

Documentation Facility

Entity Use (EN02) lists components that copy,
include, or otherwise use the target component.

Documentation Facility

Field/Screen Cross Reference (SC02) lists
application screens along with their I/O and text
fields.

Documentation Facility

Macro/Program Cross-Reference (MC01) lists
macros and the programs that use them.

Documentation Facility

Mock-Up (RP01) lists and displays report mock-
ups as painted in the Report Painter.

Painter Menu
Application Painter
Report Generator

Program DB/DC (PG02) lists the screens and the
subschemas or PSBs used by a program.

Documentation Facility

Program Definition (PG01) provides a printout
of programs created in APS.

Painter Menu
Application Painter
Report Generator

Scenario Definition (CN01) describes
components created in the Scenario Prototype
Painter.

Painter Menu
Application Painter
Report Generator

Screen Hardcopy/Field Attribute (SC01) displays
the components of a screen as painted in the
Screen Painter as well as field attribute and field
edit information.

Painter Menu
Application Painter
Report Generator

Report Available In
Reference

Reserved Words 409

rfpubb.book Page 409 Tuesday, February 19, 2002 9:56 AM
Reserved Words
The following words are reserved for APS use.

%

@

&

&&

--

$

+

++

<+

</

=

<

<<

<*

/*01

ACCEPT

ACCESS

ADD

ALTERNATE

APPLY

$APS

APSMACS

APSSRC

ARE

ASSIGN

ATTR

AUXOUT

BASIS

BEFORE

BIND

BLANK

BLOCK

BYTES

CA

CALL

CANCEL

CARDIN

CBL

CF

CH

CHANGE

CHARACTERS

$CIC-

CICS

CLEAR

CLOSE

COBMESS

COBIIMES

CODE

CODE-SET

COLUMN

COMMIT

COMP

&COMPILETIME

COMPUTATIONAL

COMPUTE

CONNECT

CONTAINS

CONTINUE

CONTROL[S]

COPY

COPYLIB

CPERFORM

DATA

DATA-NAME

$DB-

DB-CLOSE

DB-ERASE

DB-IF

DB-MODIFY

DB-OBTAIN

DB-OPEN

DB-ROLLBACK

DB-STORE

DC

$DDI-

DDISYMB

DE

DEBUG

DECL

DECLARATIVES

&DEFINE[D]

&DEFVAL

DELETE

DEPENDING

DESTINATION

DETAIL

DISCONNECT

DISPLAY

DIVIDE

DIVISION

$DLG-

DPAR

DS

EDIT-FLAGS

EJECT

ELSE

ELSE-IF

END

END-OBTAIN

ENTER

ENTRY

EOF

ERASE

ERROR

ESCAPE

EVALUATE

EXAMINE

EXEC

EXHIBIT

EXIT

FALSE

FD

FILE

FILE-ID

FILE-LIMITS
Reference

410

rfpubb.book Page 410 Tuesday, February 19, 2002 9:56 AM
FILLER

FIND

FINISH

FIRST

FOOTING

FRFM

GENERATE

GET

GO

GOBACK

GROUP

HEADING

HIGH-VALUE

HIGH-VALUES

IDM-

IF

$IM-

$IMS-

IN

&INDEX

INDEX[ED]

INDICATE

INITIATE

INPUT

INPUT-OUTPUT

INSERT

INSPECT

IO

IS

JUST

JUSTIFIED

KEEP

LABEL

LAST

LEADING

&LENGTH

LIB1[IN]

LIB2[IN]

LIB3[IN]

LIMIT

LIMITS

LINE[S]

LINE-COUNTER

LINK

LINKAGE

LK

LOW-VALUE[S]

$MACRO-

MACRO

MAININ

$MDB-

$MDC-

MERGE

MOCK

MOCKUP

MODE

MODIFY

MOD-NAME

MOVE

MSG-SW

MULTIPLY

NARROW

NOMINAL

NOT

NOTE

NEXT

NTRY

NUMBER

&NUMERIC

OBTAIN

OBTAIN-BY-KEY

OBTAIN-BY-SEARCH

OBTAIN-NEXT

OBTAIN-PREV

OBTAIN-REL

OBTAIN-REL-BY-KEY

OCCURS

OF

OMITTED

ON

OPEN

OPT

ORGANIZATION

OUTPUT

OVERPRINT

PAGE

PAGE-COUNTER

PARA

&PARSE

PASS

PASSWORD

PERFORM

PF

PFKEY-VALUE

PH

PIC

PICTURE

PLUSPOSTSOUT

PRIVIN

PROC

PROCEDURE

PROCESSING

QUOTE[S]

RDREAD

READ

READY

REC

RECEIVE

RECORD[S]

RECORDING

RD

RED

REDEFINES

REFERENCE

RELEASE

REM

RENAMES

REPEAT

REPORT[S]

REPORTING

RERUN

RESERVE

RESET

RETURN

REWRITE

RF

RH

RIGHT

ROLLBACK

SAME

$SC-

SC-CLEAR
Reference

RESET-PFKEY 411

rfpubb.book Page 411 Tuesday, February 19, 2002 9:56 AM
RESET-PFKEY

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, IMS DC, ISPF Dialog, and ISPF Prototyping targets

Description: Simulate screen invocation.

Syntax: [TP-]RESET-PFKEY keyvalue

SCELIB

$SCP-

$SCR-

SCRNLIST

SCRSYMB

SD

SPACE[S]

SPNM

SEARCH

SECTION

SEEK

SELECT

SEND

SERVICE

SET

SIGN

SKIP1

SKIP2

SKIP3

SORT

SOURCE

SQL

STANDARD

START

STATUS

STOP

STORE

STRING

STUB

&SUBSTR

SUBTRACT

SUM

SUPRASUPPRESS

SYBT

SYDD

SYEN

SYFD

SYLK

SYIO

SYM1

SYM2

SYMBOLIC

SYNC

SYNCHRONIZED

SYRP

SYSDBOUT

SYSIN

SYSOUT

SYSMSG

SYWS

TERM

TERMINATE

TEXT

TIMES

$TP-

TRACE

TRAILING

TRANCODE-AREA

TRANSFORM

TRUE

TYPE

UNSTRING

UNTIL

UPDATE

UPON

USAGE

USEUSERMACS

USERNAME

VALUE[S]

$VS-

$VSAM-

WHEN

WHILE

WITH

WORK1

WORK2

WORK3

WORK4

WORK5

WORK6

WORK7

WORK8

WORK9

WORKING-STORAGE

WRITE

WS

XCTL

ZERO[S][ES]
Reference

412

rfpubb.book Page 412 Tuesday, February 19, 2002 9:56 AM
Parameters: Valid keyvalues are the following.

Value CICS IMS DC ISPF Dialog ISPF Prototyping

PF0 Y Y N N

PF00 Y Y N N

PF01 thru PF24 Y Y Y Y

ENTER Y Y Y Y

ENTER-KEY Y Y Y Y

PA1 Y N N N

PA2 Y N N N

PA3 Y N N N

CLEAR-KEY Y N N N

CLEAR Y N N N

NO-KEY N Y N N

NONE N Y N N

PEN Y N N N

PFXX N N N Y

PFZZ N N N Y

TRIG Y N N N

OPID Y N N N

MSRE Y N N N

STRF Y N N N

PAGE-DOWN N N N N

PAGE-UP N N N N

ROLL-UP N N N N

ROLL-DOWN N N N N

PRINT-KEY N N N N

PRINT N N N N

HELP-KEY N N N N

HELP N N N N

HOME-KEY N N N N

HOME N N N N
Reference

S-COBOL Structures 413

rfpubb.book Page 413 Tuesday, February 19, 2002 9:56 AM
Comment: ISPF Dialog

To use this call, set the PF Key Option field to P on the ISPF Panel
Options screen.

Example: Simulate pressing the ENTER key.

/* Move Commarea key to key field
MOVE CA-PASSED-KEY TO SCRN-KEY-FLD
/* Move Q to FUNCTION field
MOVE ’Q’ TO SCRN-FUNCTION-FLD
/* Simulate pressing of ENTER key
/* with RESET-PFKEY call
RESET-PFKEY ENTER
/* Perform processing logic
TP-PERFORM APS-USER-CODE-PARA

S-COBOL Structures

Description: An APS program can be coded in APS Structured COBOL (S-COBOL)
language structures, either in combination with or instead of COBOL
statements. S-COBOL structures are procedural, and extend the power
of native COBOL, yet simplify and shorten the amount of code you must
write.

You can write a complete APS program in S-COBOL. There are no
differences between S-COBOL and batch COBOL in the Identification,
Environment, and Data Divisions. The major differences exist in the
Procedure Division.

S-COBOL reserved words are the same as ANSI COBOL, plus the
following. For a complete list of all APS reserved words and symbols, see
Reserved Words.

ALWAYS ELSE-IF ESCAPE

EVALUATE FALSE FALSX

NEVER REPEAT SAGE-TRACE-FLAG

TRUE TRUX UNTIL

USERNAME (IMS only) WHILE
Reference

414

rfpubb.book Page 414 Tuesday, February 19, 2002 9:56 AM
You code the S-COBOL structures in paragraphs and statement blocks. A
paragraph is denoted by the keyword PARA and a paragraph name,
followed by clauses or a statement block. Within a paragraph,
indentation determines the exact positioning of statements. A
paragraph ends with the next appearance of any Procedure Division
keyword.

Indentation determines how the statements execute. For example,
when you indent a statement under a conditional statement, the
indentation tells APS that this statement is subordinate to the
condition.

APS reads an S-COBOL program from top to bottom. The first paragraph
performs all other paragraphs. Within paragraphs and statement
blocks, statements execute sequentially until conditional statements,
PERFORMs, or CALLs modify the sequence of operations. Indentation
controls the logical sequence in which lines of source code execute.

Code S-COBOL structures in the Program Painter for batch, report, or
complex online programs, or in the Online Express Specification Editor
for an Express program.

List of Structures: The following are the S-COBOL structures.

Verbs

ENTRY Establish entry point for subprogram.

ESCAPE Exit from the current paragraph.

EVALUATE Evaluate one or more conditions; program a
decision table.

EXIT PROGRAM End the execution sequence.

PERFORM Execute a particular paragraph or section,
with or without arguments.

REPEAT Establish a loop for testing.

SEARCH Establish looping or conditionals for each
WHEN condition.

STOP RUN Return control to the operating system.

TRUE/FALSE Establish true and false flags; test the flags.

UNTIL/WHILE Form a loop with a test.

USERNAME Title a procedure generated by the APS
Precompiler.
Reference

415

rfpubb.book Page 415 Tuesday, February 19, 2002 9:56 AM
Conditionals

Error Handling

Flags

Looping

Transferring Program Control

Syntax Rules: Observe the following rules and conventions when coding an S-COBOL
program.

• When coding paragraph names, at least one character within the
first 24 characters must be unique for each paragraph in the
program.

AT END/INVALID KEY Test for end-of-file or invalid key condition.

EVALUATE Evaluate one or more conditions; program a
decision table.

IF/ELSE-IF/ELSE Evaluate one or more conditions.

SEARCH Establish looping or conditionals for each
WHEN condition.

TRUE/FALSE Establish true and false flags; test the flags.

AT END/INVALID KEY Test for end-of-file or invalid key condition.

TRUE, FALSE, ALWAYS,
NEVER

Use these APS-supplied flags for testing.

TRUE/FALSE Establish true and false flags; test the flags.

SAGE-TRACE-FLAG Debug with the Trace facility.

TRUE, FALSE, ALWAYS,
NEVER

Use these APS-supplied flags for testing.

SAGE-TRACE-FLAG Debug with the Trace facility.

REPEAT Establish a loop for testing.

UNTIL/WHILE Form a loop with a test.

ENTRY Establish entry point for subprogram.

ESCAPE Exit from the current paragraph.

EXIT PROGRAM End the execution sequence.

STOP RUN Return control to the operating system.
Reference

416

rfpubb.book Page 416 Tuesday, February 19, 2002 9:56 AM
• Code only one verb per source code line.

• Do not code punctuation in the Procedure Division. It is unnecessary
and therefore disregarded.

• Code punctuation within the Identification, Environment, and Data
Divisions that conforms to COBOL rules.

• Code structures with consistent indentation. The level of
indentation can vary with each new statement block; however, it
cannot vary within a statement block of code. We recommend using
four additional spaces for each new level of indentation.

• Do not code the following structures.

PERFORM ... THRU statement

PERFORM paragraphname(arg1, arg2, ..., argN)
... UNTIL condition

GO TO statement

SORT|MERGE THRU ... sectionname with INPUT PROCEDURE or
 OUTPUT PROCEDURE.

NEXT SENTENCE

• Avoid using the double-hyphen (--). The S-COBOL translator
frequently creates procedures and flags required for generating
ANSI COBOL that are unnecessary and sometimes invalid in S-
COBOL. Generated names for these procedures or flags always
contain a double-hyphen to avoid conflict with programmed names.
Under IMS, the USERNAME parameter can change double hyphens
to single hyphens at S-COBOL processing time.

• Continue a structure on subsequent lines by coding an ellipsis
followed by a space (...).

• Continue a non-numeric literal by splitting the literal and
concatenating the parts, which APS then treats as separate literals.
Concatenate non-numeric literals by separating them with an
ellipsis, space, two ampersands, and space (... &&), for example,

-KYWD- 12--*--20---*----30----*---40
 REGISTER = " THIS IS A VERY,"
 ... && "VERY LONG LITERAL"

• Enclose literals with quotation marks. S-COBOL allows both single
and double quotation marks within the same program.
Reference

417

rfpubb.book Page 417 Tuesday, February 19, 2002 9:56 AM
• Use any of the following relational operators to make comparisons.

• Create compound conditions by using ANDs or ORs.

• Optionally, use a simplified syntax

• Use the above simplified syntax with any of these verbs - ADD,
COMPUTE, DIVIDE, MOVE, MULTIPLY, SUBTRACT

Type of Comparison Relational Operator

Greater than IS GREATER THAN
IS >

Not greater than IS NOT GREATER THAN
IS NOT >
IS <=

Less than IS LESS THAN
IS <

Not less than IS NOT LESS THAN
IS NOT <
IS >=

Equal to IS EQUAL TO
IS =

Not equal to IS NOT EQUAL TO
IS NOT =

Greater than or equal to >=

Less than or equal to <=

Abbreviated Syntax S-COBOL/COBOL Equivalent

A = B MOVE B TO A

A B = C MOVE C TO A B

A = B + C COMPUTE A = B + C

B = B + C COMPUTE B = B + C

A = B - C COMPUTE A = B - C

A = B * C COMPUTE A = B * C

A = B / C COMPUTE A = B / C

A = B + (C * D) COMPUTE A = B + (C * D)

A <+ B COMPUTE A = A + B

A </ B COMPUTE A = A / B

A << B MOVE B TO A

A <* B COMPUTE A = A * B
Reference

418

rfpubb.book Page 418 Tuesday, February 19, 2002 9:56 AM
• The following syntax is ambiguous, so results are unpredictable:

IF condition = condition
ELSE-IF condition = condition
 ELSE-IF condition = condition

To achieve correct results, code:

IF condition = condition
ELSE-IF condition = condition
ELSE-IF condition = condition

or:

IF condition = condition
ELSE-IF condition = condition
 IF condition = condition
 ELSE-IF condition = condition

Example: The following example demonstrates control logic without interrupting
the flow or readability of the program with a GO TO. Program control is
handled entirely by S-COBOL indentation.

-LINE- -KYWD- 12--*--20---*----30----*---40---*----50---*--
001030 PARA PAYROLL-CALCULATION /*PARAGRAPH NAME
001040 IF EMPLOYEE-TYPE = ’HRLY’
001050 IF HOURS-WORKED > 40
001060 HOURS-BASE = HOURS-WORKED * 2
001070 HOURS-BASE = HOURS-BASE - 40
001080 ELSE
001090 HOURS-BASE = HOURS-WORKED
001100 GROSS-PAY = HOURS-BASE * HOURS-RATE
001110 ELSE
001120 GROSS-PAY = EMPLOYEE-SALARY

Because IF conditions generally require an alternative action, you
generally code an ELSE-IF or ELSE statement at the same level of
indentation as the IF. In the previous example, if EMPLOYEE-TYPE is not
equal to HRLY (line 1040), control passes to the corresponding ELSE
statement on line 1110. On the other hand, if EMPLOYEE-TYPE is equal
to HRLY, lines 1050-1100 execute. In this case, if HOURS-WORKED is not
greater than 40, control passes to the ELSE statement at the same
indentation (line 1080). Thus, lines 1060-1070 execute only for hourly
employees who have worked over 40 hours, while line 1090 executes for
hourly employees who have worked 40 hours or less.
Reference

Scenario Definition Report (CN01) 419

rfpubb.book Page 419 Tuesday, February 19, 2002 9:56 AM
Line 1100 executes for all hourly employees, because these lines are at
the same level as the preceding IF/ELSE. Line 1120 executes for
employees who are not hourly.

Related Topics:

Scenario Definition Report (CN01)

Category: APS-generated report (see Application Reports)

Description: The Scenario Definition Report displays the Scenario Painter
components as they are painted, along with descriptive information
such as comments and screen title, as well as each screen in the scenario
as painted. Use this report to document scenarios for end users, so they
can help you determine whether your scenarios cover all of the required
cases.

Comment: Produce the Scenario Definition Report from the Report Generator by
selecting Actions and then the set of members you want. Or, enter 1, 2,
or 3 in the Option field. If you enter 3, enter a member name or range
of member names for selecting report data and then enter cn in the
Library field. Press Enter to submit a job to produce the report.

Example:

REPORT CODE: CN01 APS APPLICATION PAINTER PAGE 1
 SCENARIO DEFINITION REPORT 01/18/92 15:00
 CLSAPS.CLS2
SELECTION CRITERIA:
 TDDEMO1
**
SCENARIO: TDDEMO1 CREATED: 10/17/90
TITLE: UPDATED: 10/17/90
**

LINE SCREEN SCREEN TITLE USER COMMENT
---- -------- -- ------------------
0001 TDME CUSTOMER ORDER MAIN MENU MENU SELECTS ONLY
0002 TDCM CUSTOMER MAINTENANCE BROWSE ONLY
0003 TDPL PARTS INVENTORY LIST

See... For other information about coding
S-COBOL programs...

See PARA and Paragraphs Coding statement blocks

See Limits S-COBOL limits
Reference

420

rfpubb.book Page 420 Tuesday, February 19, 2002 9:56 AM
0004 TDOM ORDER RECORD MAINTENANCE
0005 TDOT ORDER COST TOTALS SUMMARY SCREEN
0006 TDOJ CUSTOMER ORDERS INQUIRY BROWSE ONLY
0007 TDOU GIFT CERTIFICATES
0008 TDCS ORDERS DELIVERY LIST
0009 TDPF PART LIST SELECTIVE INFO
0010 TDPM PART RECORD MAINTENANCE UPDATE

Screen Hardcopy/Field Attribute Report (SC01)

Category: APS-generated report (see Application Reports)

Description: The Screen Hardcopy/Field Attribute Report provides a mock-up of the
screens you select as they are painted. In addition, the report includes
sections that describe field attributes and field edits.

The Field Attribute portion lists the attribute values for each field in the
order it appears on the screen. The report indicates default values with
periods (..). The Occ(urrence) column shows the number of field
occurrences within a repeated block. The end of the report shows the
total number of screens on the report.

The Field Edits section lists the field edits applied to the fields.

Comments: • Produce the Screen Hardcopy/Field Attribute Report from the
Report Generator, Painter Menu, or Application Painter.

• You can then set or change generation options for the report. To do
so, access the Report Options screen in one of the following ways.

• From the Report Generator screen, select Options Report
Options, or enter 4 in the Option field.

• From any APS screen, select Options Report Options from the
action bar, or enter opt in the Command or Options field. From
the APS Options Menu that displays, select Actions Report
Options from the action bar, or enter option 4 in the Options
field.
Reference

Screen Hardcopy/Field Attribute Report (SC01) 421

rfpubb.book Page 421 Tuesday, February 19, 2002 9:56 AM
Complete the fields on the Report Options screen.

Example:

REPORT CODE: REPT APS 1.8 ENTITY REPORT FACILITY PAGE 1
 CLSAPS.CLS2 01/18/92 15:04
REPORT CRITERIA:
 ALL SCREENS IN THE APPLICATION : TDDEMO

 LIBRARY ENTITY
 TYPE NAME STATUS REMARKS
 ------- ------ -------- --------------------------------------
 AP TDDEMO REPORTED
 SC TDCM REPORTED
 SC TDCS REPORTED
 SC TDME REPORTED
 SC TDOJ REPORTED
 SC TDOM REPORTED
 SC TDOT REPORTED
 SC TDOU REPORTED
 SC TDPF REPORTED
 SC TDPL REPORTED
 SC TDPM REPORTED
REPORT CODE: AP01 APS APPLICATION PAINTER PAGE 1
 APPLICATION DEFINITION REPORT 01/18/92 15:04
 CLSAPS.CLS2
SELECTION CRITERIA:
 TDDEMO

APPLICATION: TDDEMO CREATED: 02/15/90
TITLE : UPDATED: 08/30/90
AUTHOR :CLSTR1 DC TARGET: CICS
 DB TARGET: VSAM

-LINE- PROGRAMS SCREENS IO REPORTS DATA STR TY SBSC/PSB USERMACS LOC
------ -------- ------- -- ------- -------- -- -------- -------- ---
000001 TDME TDME IO
000002 TDCM TDCM IO TDDB2
000003 TDPL TDPL IO TDDB2

Field Values

Left Justify Report Y Print the Screen Hardcopy Report
(SC01) starting in column 1 to fit
an 8.5 x 11 inch page.

N Default. Center the report.

Field Attributes Report Y Default. Print the Field Attributes
Report with the Screen Hardcopy
Report.

N Do not print the Field Attributes
Report.

Field Edits Report Y Default. Print the Field Edits
Report with the Screen Hardcopy
Report.

N Do not print the Field Edits
Report.
Reference

422

rfpubb.book Page 422 Tuesday, February 19, 2002 9:56 AM
000004 TDOM TDOM IO TDDB2
000005 TDOT TDOT IO TDDB2
000006 TDOJ TDOJ IO TDDB2
000007 TDOU TDOU IO TDDB2
000008 TDCS TDCS IO TDDB2
000009 TDPF TDPF IO TDDB2
000010 TDPM TDPM IO TDDB2
REPORT CODE: SC01 APS SCREEN PAINTER PAGE 1
 SCREEN HARDCOPY REPORT 01/18/92 15:04
 CLSAPS.CLS2
SELECTION CRITERIA:
 SCREEN-NAME = TDCM

ENTITY: TDCM CREATED: 09/13/89
TITLE: UPDATED: 03/20/90

-+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
 CUSTOMER ORDER ENTRY SYSTEM

 APS DEVELOPMENT CENTER

 CUSTOMER RECORD MAINTENANCE

 FUNCTION ==========> X (Q-QUERY U-UPDATE A-ADD D-DELETE)

 CUSTOMER NUMBER ===> XXXXXX XXXXXXX
 CUSTOMER NAME =====> XXXXXXXXXXXXXXXXXXXX
 CUSTOMER ADDRESS ==> XXXXXXXXXXXXXXXXXXXX
 CUSTOMER CITY =====> XXXXXXXXXXXXXXXXXXXX
 CUSTOMER ZIP ======> XXXXXXXXX

 Enter CUSTOMER NUMBER TO QUERY A RECORD

 PF3 = MAIN MENU

XXX
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---8

REPORT CODE: SC01 APS SCREEN PAINTER PAGE 1
 FIELD ATTRIBUTE REPORT 01/18/91 15:04
 CLSAPS.CLS2
SELECTION CRITERIA:
 SCREEN-NAME = TDCM

ENTITY: TDCM CREATED: 09/13/89
TITLE: UPDATED: 03/20/90

 EDIT HI- INIT
FIELD OCC ROW COL TYPE INTEN MDT NUM DET MASK MOD COLOR LITE CURS

FUNCTION 7 29 1 UNPR BRIGHT T .. .
CUSTOMER-NO 9 29 6 UNPR BRIGHT
SAVEKEY 9 49 7 PROT DARK
CUSTOMER-NAME 10 29 20 UNPR BRIGHT
CUSTOMER-ADDR 11 29 20 UNPR BRIGHT
CUSTOMER-CITY 12 29 20 UNPR BRIGHT
CUSTOMER-ZIP 13 29 9 UNPR BRIGHT
MESSAGE 24 2 79 PROT BRIGHT
REPORT CODE: ED01 APS SCREEN PAINTER PAGE 1
 FIELD EDIT REPORT 01/18/92 15:04
 CLSAPS.CLS2
Reference

Screen Hardcopy/Field Attribute Report (SC01) 423

rfpubb.book Page 423 Tuesday, February 19, 2002 9:56 AM
SELECTION CRITERIA:
 SCREEN-NAME = TDCM

ENTITY: TDCM CREATED: 09/13/89
TITLE: UPDATED: 03/20/90

DEFAULT SCREEN LEVEL ERROR PROCESSING:

 SYSMSG FIELD: MESSAGE
 ERROR ATTRIBUTING: POS+BRT
 ERROR MESSAGE : FIELD AT CURSOR IS IN ERROR
 REQUIRED FIELD MESSAGE: FIELD AT CURSOR IS REQUIRED

CONDITIONS TO BYPASS INPUT EDITING:

 BYPASS INPUT EDITS IF
 FUNCTION = ’Q’

 BYPASS INPUT EDITS IF
 PF01 ==> PF09 ==> PF17 ==> PA01 ==>
 PF02 ==> PF10 ==> PF18 ==> PA02 ==>
 PF03 ==> S PF11 ==> PF19 ==> CLEAR ==>
 PF04 ==> PF12 ==> PF20 ==> Enter ==>
 PF05 ==> PF13 ==> PF21 ==>
 PF06 ==> PF14 ==> PF22 ==>
 PF07 ==> PF15 ==> PF23 ==>
 PF08 ==> PF16 ==> PF24 ==>

FIELD

CUSTOMER-NO LEN: 6 ROW: 9 COL: 29 INTERNAL PICTURE: X(06)

 INPUT EDITING:
 REQUIRED
 NUMERIC TEST

 ERROR PROCESSING:
 ERROR ATTRIBUTING: POS+BRT
 ERROR MESSAGE : YOU MUST Enter A NUMERIC VALUE
 REQUIRED FIELD MESSAGE: YOU MUST Enter A CUSTOMER NUMBER
REPORT CODE: ED01 APS SCREEN PAINTER PAGE 2
 FIELD EDIT REPORT 01/18/92 15:04
 CLSAPS.CLS2
SELECTION CRITERIA:
 SCREEN-NAME = TDCM

CUSTOMER-NAME LEN: 20 ROW: 10 COL: 29 INTERNAL PICTURE: X(20)

 INPUT EDITING:
 REQUIRED
 INPUT MASK: ADDDDDDDDDDDDDDDDDDD

 ERROR PROCESSING:
 ERROR ATTRIBUTING: POS+BRT
 ERROR MESSAGE : CUSTOMER NAME MUST NOT BE NUMERIC
 REQUIRED FIELD MESSAGE: YOU MUST Enter CUSTOMER NAME

CUSTOMER-ADDR LEN: 20 ROW: 11 COL: 29 INTERNAL PICTURE: X(20)

 INPUT EDITING:
 REQUIRED
Reference

424

rfpubb.book Page 424 Tuesday, February 19, 2002 9:56 AM
 ERROR PROCESSING:
 ERROR ATTRIBUTING: POS+BRT
 REQUIRED FIELD MESSAGE: CUSTOMER ADDRESS MUST BE ENTERED

CUSTOMER-CITY LEN: 20 ROW: 12 COL: 29 INTERNAL PICTURE: X(20)

 INPUT EDITING:
 REQUIRED

 ERROR PROCESSING:
 ERROR ATTRIBUTING: POS+BRT
 REQUIRED FIELD MESSAGE: YOU MUST Enter THE CUSTOMER CITY

CUSTOMER-ZIP LEN: 9 ROW: 13 COL: 29 INTERNAL PICTURE: X(09)

 INPUT EDITING:
 REQUIRED

 ERROR PROCESSING:
 ERROR ATTRIBUTING: POS+BRT
 REQUIRED FIELD MESSAGE: YOU MUST Enter THE POSTAL CODE

Screen Redefinition

Description: During screen generation, APS automatically generates record
definitions describing the data layout and format of a screen. You can
redefine the entire generated screen record, selected tables in the
screen, or selected fields in the screen.

To do so, you set a flag to enable redefinition, and create user macros
to generate the redefinition code. APS provides macro name suffixes
that the flags recognize and invoke automatically.

To redefine multiple screens, see SCRNLIST.

Procedure: 1 To set a flag to enable redefinition, go to the APS CNTL file
GENSYMB2 and set one of the following flags to 1.

&SCRGEN-RDF-REC Use for redefining an entire screen record
description. The flag invokes the
$screenname-RECORD-RDF macro, which
you write.

&SCRGEN-RDF-TAB Use for redefining a screen table. The flag
invokes the $screenname-TABLE-n-RDF
macro, which you write.
Reference

Screen Redefinition 425

rfpubb.book Page 425 Tuesday, February 19, 2002 9:56 AM
2 In the USERMACS macro library, create a macro to redefine your
screen record description. Use the following macro naming
conventions.

Comments: • When using the TP-ATTR call in a macro, use the original screen
name, not the new (redefined) name.

• When redefining a screen, include the attribute bytes as part of the
redefinition.

Examples: Redefine field PARTNO on screen INVENT. Note that all field names
within the screen are prefixed with the screen name.

% DEFINE $INVENT-PARTNO-RDF
 &12+05 INVENT-PARTNO-Z99 &36+REDEFINES INVENT-PARTNO
 &40+PIC Z99.

Redefine a table definition for a repeat block field named PART-NO-
ROW on screen INVENT. The variable &INVENT-TABLE-1-MAX contains
the number of occurrences for the repeated row block. The rule $SC-
REP-FIELD-HEADER-0 generates the native attribute fields depending on
the DC target. The field INVENT-PART-NO-ROW-EDITED contains the
picture that is used to edit the data for output display.

% DEFINE $INVENT-TABLE-1-RDF
 &12+05 FILLER &46+REDEFINES INVENT-TABLE-1.
 &16+10 FILLER &46+OCCURS &INVENT-TABLE-1-MAX.
 $SC-REP-FIELD-HEADER-0("PART-NO-ROW")
 &20+15 INVENT-PART-NO-ROW-EDITED &46+PIC ZZZ9.
% END

&SCRGEN-RDF-FLD Use for redefining a screen field. The flag
invokes the $screenname-fieldname-RDF
macro, which you write.

Entire record description $screenname-RECORD-RDF

Field in a record description $screenname-fieldname-RDF

Table in a record description $screenname-TABLE-n-RDF

Where n is the table position in
sequence with other tables on the
screen, counting from top to bottom
on the screen.
Reference

426

rfpubb.book Page 426 Tuesday, February 19, 2002 9:56 AM
SCRNLIST

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, DDS, IMS DC, ISPF Dialog, and ISPF prototyping targets

Description: Enable your program to use multiple screens and generate:

• Procedural code to receive each specified screen

• Screen records in the Working-Storage or Linkage Sections

SCRNLIST automatically generates when you specify multiple I/O screens
for a program in the Application Painter. To redefine a single screen,
see Screen Redefinition.

Syntax CICS

[TP-]SCRNLIST screenname1 [... screenname12]
... [MAPSET(mapsetname)]
... [LINKAGE]
... [REDEFINE|NOREDEF]

IMS DC

Format 1:

[TP-]SCRNLIST screenname1 [.../screenname40]

Format 2:

[TP-]SCRNLIST screenname1 [... screenname40]

ISPF Dialog

Format 1:

[TP-]SCRNLIST screenname1[(LK)] [... screenname40[(LK)]]

Format 2:

[TP-]SCRNLIST screenname1[... screenname40]
... [LINKAGE]
Reference

SCRNLIST 427

rfpubb.book Page 427 Tuesday, February 19, 2002 9:56 AM
ISPF prototyping

Any target syntax.

Parameters:

Comments: • Code the SCRNLIST call to override the generated TP-SCRNLIST, or if
coding outside the APS Painters.

• Code SCRNLIST only once, before NTRY, and do not code a screen
name with NTRY.

• APS generates 88-level flags indicating the received screen.

TP-SCRN-RECEIVED PIC X(08)
 88 TP-screenname-RECEIVED VALUE ’screenname’.

CICS

To generate multiple-map mapsets, access APS Utilities Menu, select the
APS Precompiler screen, and then select option 2X, Generate BMS
Multiple Map Mapset.

IMS DC

• Label each screen in the APS Screen Painter. A labeled screen
contains eight extra bytes (appended to the MID) that contain the
screen name. NTRY logic determines which screen named in
SCRNLIST was received, moves the data to the appropriate screen
record description in Working-Storage, and performs any specified
field editing.

• Screens separated with a slash (/) instead of a space redefine each
other in Working-Storage, limiting the size of Working-Storage.

• A maximum of 30 screens can be listed in the Application Painter
(and thus appear in the automatically-generated TP-SCRNLIST).

(LK) LINKAGE Generate every screen record in the Linkage
Section instead of in Working-Storage.

mapsetname Mapset containing the screen(s) received by the
program; must be a literal (maximum 7
characters).

NOREDEF Screen records do not redefine each other.
Ignored when coded with LINKAGE.

REDEFINE Default. Screen records redefine each other.
Reference

428

rfpubb.book Page 428 Tuesday, February 19, 2002 9:56 AM
• You can write macros to customize SCRNLIST processing for some or
all screens in the screen list, using an APS-supplied predefined
macro name.. APS executes the macros at locations immediately
before and after the following APS-generated paragraphs.

Define the macros using these predefined macro name formats.

$TP-PRE-CHK-SCRN-RECEIVED
$TP-POST-CHK-SCRN-RECEIVED
$TP-PRE-screenname-RECEIVED
$TP-POST-screenname-RECEIVED
$TP-PRE-SCRNLIST-EDIT
$TP-POST-SCRNLIST-EDIT
$TP-PRE-screenname-INP-EDIT
$TP-POST-screenname-INP-EDIT

Examples: CICS

Generate screen records SCRA and SCRB, that redefine each other, in
Working-Storage. Both screens are in mapset SCRASET.

SCRNLIST SCRA SCRB MAPSET(SCRASET)

Generate a screen record in the Linkage Section for screen SCRA.

SCRNLIST SCRA MAPSET(SCRASET) LINKAGE

Generate screen records that do not redefine each other.

SCRNLIST SCRA SCRB NOREDEF

IMS DC

Code logic that receives either SCREENA, SCREENB, or SCREENC, and
always sends SCREENC as the output screen:

IF TP-SCREENA-RECEIVED
 SCREENC-FIELD-1 = SCREENA-FIELD-X
 SCREENC-FIELD-2 = SCREENA-FIELD-Y

APS Paragraph Paragraph Function

APS-CHK-SCRN-RECEIVED-PARA Checks which screen was
received

APS-screenname-RECEIVED-PARA Receives the screen

APS-SCRNLIST-EDIT-PARA Determines which screen has
field edits

APS-screenname-INP-EDIT-PARA Processes screen field edits
Reference

SD 429

rfpubb.book Page 429 Tuesday, February 19, 2002 9:56 AM
 SCREENC-FIELD-3 = SCREENA-FIELD-Z
 .
 .
IF TP-SCREENB-RECEIVED
 SCREENC-FIELD-1 = SCREENB-FIELD-XX
 SCREENC-FIELD-2 = SCREENB-FIELD-YY
 SCREENC-FIELD-3 = SCREENB-FIELD-ZZ

Code logic where, during a single execution, the program can receive
either SCREENA or SCREENB. Let SCREENA and SCREENB redefine each
other; keep SCREENC separate (not involved in the redefinition in the
SCRNLIST call) in order to prevent any improper overlaying (and thus
destruction) of data fields.

SCRNLIST SCREENA/SCREENB SCREENC

ISPF Dialog

Generate screen records SCRA and SCRB in Working-Storage:

SCRNLIST SCRA SCRB

Generate screen record SCRA in Working-Storage, and screen record
SCRB in the Linkage Section

SCRNLIST SCRA SCRB(LK)

SD

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Include a sort file description.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SD sortfilename
 [Applicable COBOL SD clauses]

Comments: • Use one SD keyword per sort file description.

• Follow each file description with the file record description, using
the 01, DS, REC, or ++ keywords.
Reference

430

rfpubb.book Page 430 Tuesday, February 19, 2002 9:56 AM
Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IO INPUT-FILE ASSIGN TO UT-S-INPUT
 IO OUTPUT-FILE ASSIGN TO UT-S-OUTPUT
 SPNM C01 IS TOP-OF-PAGE
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 01 INPUT-RECORD PIC X(80)
 .
 .
 FD OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 01 OUTPUT-RECORD PIC X(80)
 .
 .
 SD SORT-FILE
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS SORT-RECORD
 01 SORT-RECORD PIC X(80)
 .
 .

SEARCH

Category: S-COBOL structure (see S-COBOL Structures)

Description: Use in the same manner as the COBOL SEARCH verb, including
conditionals and looping for each WHEN condition.

Syntax: Format 1:

SEARCH identifier1 VARYING indexname|identifier2
... [[AT] END]
 statementblock
[WHEN searchcondition1
 statementblock]
 .
 .
 .
[WHEN searchconditionN
 statementblock]
Reference

SEND 431

rfpubb.book Page 431 Tuesday, February 19, 2002 9:56 AM
Format 2:

SEARCH ALL identifier [[AT] END]
 statementblock
WHEN searchcondition
 statementblock

Example: Use SEARCH to achieve the NEXT SENTENCE concept. If the condition in
lines 1040-1050 is true, pass control to line 1110.

-LINE- -KYWD- 12-*----20---*----30---*----40---*----50---*-
001010 PARA SEARCH-TABLE
001020 SEARCH STOCK-ELEMENT AT END
001030 PERFORM END-ROUTINE
001040 WHEN QUAN-ON-HAND (STOCK-INDEX) NOT <
001050 ... QUAN-NEEDED (STOCK-INDEX)
001060 WHEN QUAN-ON-HAND (STOCK-INDEX) = ZERO
001070 PERFORM NO-STOCK-ROUTINE
001080 WHEN QUAN-ON-HAND (STOCK-INDEX) <
001090 ... QUAN-NEEDED (STOCK-INDEX)
001100 PERFORM DETERMINE-IF-ORDER-ROUTINE
001110 WORK-QUAN = QUAN-ON-HAND (STOCK-INDEX)

SEND

Category: Data communication call (see Data Communication Calls)

Description: Display screen data for end user response. Additionally:

• Under CICS, generate a CICS SEND MAP command to send screen
data to a terminal for user response, as well as a CICS RETURN
command to return control to CICS.

• Under IMS DC, send screen messages, in screen or record layout
form, to terminals or printers.

Syntax: CICS

[TP-]SEND screen[(mapsetname)] [errorpara]
... [TRANSID(name)]
... [NORETURN] [NOERASE]
... [CICSoption [CICSoption] ...]
Reference

432

rfpubb.book Page 432 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog

[TP-]SEND screen [errorpara]
... [CONTINUE|NOCONTINUE]

IMS DC

 [TP-]SEND screenname|recordname [errorpara]
 ... [lterm]
 ... [keyword[+keyword] ...]

ISPF Prototyping

Valid syntax is the CICS syntax, the ISPF Dialog syntax, and:

[TP-]SEND screenname|recordname [errorpara]
... [lterm]

Parameters: CONTINUE Execute the next instruction after the call. See
also "Comments" below.

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

keyword Valid keywords are:

NOALTRESP Default. Do not use the
alternate response IO PCB to
send the response to the
terminal.

ALTRESP Use the alternate response IO
PCB to send the response to the
terminal.

NOCONT Default. Control returns to the
top of the program to process
another input message.

CONT Execute the next instruction
after the call.

CONTCOND TP-CONTCOND determines if
control passes to the next
instruction or returns to the top
of the program.
Reference

SEND 433

rfpubb.book Page 433 Tuesday, February 19, 2002 9:56 AM
NOEXPRESS Default. Do not send a message
for abnormal program
termination.

EXPRESS Send a message at program
termination.

NOENDCONV Default. Do not blank out
TRANCODE in the SPA.

ENDCONV Blank out TRANCODE in the
SPA.

SCREEN Default. Input is an APS-painted
screen. Multisegment screens
are not supported.

RECORD Input is recordname. See also
"Comments" below.

NOPURG Send all messages to the same
destination as one multi-
segmented message. Default
with NOEXPRESS keyword.

PURG After inserting the message,
send it as one single-segmented
message. Default with EXPRESS
keyword.

lterm Logical terminal or printer where program sends
message; can be a literal (maximum 8 characters)
or COBOL data name (maximum 9 characters).
Default is device that sends an input message to
the program.

mapsetname Mapset containing the screen(s) the program
receives; must be a literal (maximum 7
characters). When not specified, APS generates a
default mapset name as per NTRY.

NOCONTINUE Default. Return control to the top of the
program. See also "Comments" below.

NOERASE Suppress default generation of ERASE.

NORETURN Suppress default generation of CICS RETURN
command (after a generated CICS SEND MAP
command).
Reference

434

rfpubb.book Page 434 Tuesday, February 19, 2002 9:56 AM
Comments: ISPF Dialog

• With NOCONTINUE, enter your return code checking routine under
TP-SCREEN-INVOKED logic. With CONTINUE, enter your return code
routine checking under SEND.

• The following APS-provided structure checks the return code after a
SEND.

APS-TP-SEND-RC PIC 9(08).
 88 OK-ON-SEND VALUE 0.
 88 NTF-ON-SEND VALUE 4.
 88 END-ON-SEND VALUE 8.
 88 AB-ON-SEND VALUE 12 16 20

IMS DC

• For recordname, move the MOD name to IM-SCREEN-RECORD-
MODNAME (an APS-generated field) prior to SEND. Multisegment
screens are not supported.

• Use the PURG and NOPURG keywords to control how APS sends
messages. When issuing multiple inserts to the same destination
before reaching a SYNC point, IMS sends the messages as one multi-
segmented message. If you send the message via an Express PCB,
APS issues a PURG after the insert and sends it as one single-
segmented message.

• When coding RECORD and recordname in conversational programs,
code the following statement if recordname differs from your
application trancode.

SYM1 % &recordname-TRANCODE = "trancode"

recordname User-defined I/O area in Working-Storage. See
also "Comments" below.

screenname Screen name; must be literal (maximum 8
characters).

TRANSID (name) Transaction code identifying the program where
control returns; can be a literal (maximum 4
characters) or COBOL data name (minimum 5
characters).

userparm Pass linkage data area(s). Code with TP-LINKAGE,
which names the 01-level user-defined area in
the Linkage Section.
Reference

SEND 435

rfpubb.book Page 435 Tuesday, February 19, 2002 9:56 AM
• When sending screens with edited fields, the value of the field
variable (the COBOL name assigned during screen painting) moves
to a field defined with a display format. The edited fields must
contain valid values on output or the screen returns for correction.

To allow end users to send invalid or empty screen values, specify
NORETRY with the NTRY keyword and use the generated flags to
test for input data validity.

• SEND logically terminates a program when executed; however, the
program actually runs as a loop that processes multiple input
messages.

• To retain control in the program after sending a screen, code the
CONT keyword. You can then send more than one screen or
message from a program while processing a single transaction, or
send multiple pages of output to the same destination.

• When coding a conversational program in Online Express, APS
checks your alternate IO PCB for the following parameters.

EXPRESS=YES
MODIFY=YES
ALTRESP=YES

If any parameters are missing, a message warns you that, if an error
occurs after successful database updates, APS does not send a
message to the originating terminal--the program simply terminates
and performs a rollback of the updates.

• In a single program execution, the terminal operator can page
forward and backward with MFS logical paging commands. To do
this:

a Ensure that all pages are for the same screen format.

b Ensure that all generated APS screens contain a single DPAGE.

c Specify operator logical paging on the Screen Generation
Parameters screen in the Screen Painter.

d Specify that the trancode comes either from a screen field or
from PF keys. If PF keys provide all or part of the trancode,
define the PF key values on the MFS Function Key screen.
Reference

436

rfpubb.book Page 436 Tuesday, February 19, 2002 9:56 AM
Examples: CICS

Send screen map SCRA.

Program Painter source

SEND SCRA

Generated source:

EXEC CICS SEND MAP(’SCRA’)
 FROM(AA00-RECORD)
 MAPSET(’SCRASET’)
 CURSOR
 ERASE
 FREEKB END-EXEC.
EXEC CICS RETURN
 TRANSID(’SCRA’)
 COMMAREA(TP-COMMAREA)
 LENGTH(169) END-EXEC.
GO TO APS-USER-MAIN-PARA--EXIT.

Generate a CICS SEND MAP for map SCRA in mapset SCRASET; return to
CICS with transaction code WXYZ. Override the default TRANSID
specified in the Screen Painter.

SEND SCRA(SCRASET) * TRANSID(’WXYZ’)

Generated source:

EXEC CICS SEND MAP(’SCRA’)
 FROM(AA00-RECORD)
 MAPSET(’SCRASET’)
 CURSOR
 ERASE
 FREEKB END-EXEC.
EXEC CICS RETURN
 TRANSID(’WXYZ’)
 COMMAREA(TP-COMMAREA)
 LENGTH(169) END-EXEC.
GO TO APS-USER-MAIN-PARA--EXIT.

Generate a CICS SEND MAP for map SCRA.

SEND SCRA * NORETURN

Generated source:

EXEC CICS SEND MAP(’SCRA’)
 FROM(AA00-RECORD)
Reference

SEND 437

rfpubb.book Page 437 Tuesday, February 19, 2002 9:56 AM
 MAPSET(’SCRASET’)
 END-EXEC.

DDS and DLG

Display screen SCRA. Determine whether END or RETURN was entered
on the screen.

NTRY SCRA
 IF TP-PROGRAM-INVOKED
 PERFORM INITIALIZE-SCREEN-FIELDS
 ELSE-IF TP-SCREEN-INVOKED
 IF END-ON-SEND
 ... OR SCRA-FUNCTION = ’E’
 /* USER ENTERED END OR RETURN
 TERM
 ELSE-IF OK-ON-SEND
 PERFORM PROCESS-SCREEN-DATA
 ELSE
 SCRA-SYSMSG = ’INVALID OPTION’
 SEND SCRA * NOCONTINUE

Display screen SCRA. Determine whether END or RETURN was entered
on the screen. Perform return code checking immediately following the
SEND.

REPEAT
 SEND SCRA * CONTINUE
UNTIL APS-TP-SEND-RC > 0
 PERFORM PROCESS-SCREEN-DATA
TERM

IMS DC

Send the single screen defined as output for the program.

SEND

In a program with multiple output screens, qualify the screens to send.

SEND SCRA

Send a screen using the EXPRESS PCB.

SEND SCRA * * EXPRESS

Send a screen using an alternate PCB and return to the next instruction
following the call.

SEND SCRA * * CONT+ALTRESP
Reference

438

rfpubb.book Page 438 Tuesday, February 19, 2002 9:56 AM
SOURCE

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Creating Reports with Report Writer.)

Compatibility: Batch environments

Description: Map Data Division items to output fields.

Syntax: SOURCE [IS] dataname [iterativeexpression] [PIC picclause]
 [BLANK [WHEN] ZERO]
 [CHANGE INDICATE|GROUP INDICATE]
 [JUSTIFIED|JUST [RIGHT]
 [DATA-NAME [IS] fieldname]

Keywords/
Parameters:

BLANK WHEN ZERO Print spaces when SOURCE dataname is zero.
COBOL usage rules apply.

CHANGE INDICATE Print value of SOURCE dataname whenever it
changes. See also "Comments:" below.

dataname Data item being referenced; can be report
mock-up field or a Working-Storage field. See
also "Comments" below.

DATA-NAME fieldname Name a sum accumulator established by a SUM
or REFERENCE clause. Do not define fieldname
in Working-Storage. At generation, APS inserts
fieldname after the level number in the
generated report group. DATA-NAME moves
the value of the internal SUM accumulator to
fieldname.

Code the DATA-NAME clause when a SUM
UPON clause references DETAIL report group,
when the program references a sum
accumulator, or when a sum accumulator
requires a data name for qualification.
Reference

SOURCE 439

rfpubb.book Page 439 Tuesday, February 19, 2002 9:56 AM
Comments: • SOURCE immediately follows the MOCKUP or OVERPRINT clause.

• SOURCE designates that the item is described in the program Data
Division, is the special Report Writer register LINE-COUNTER or
PAGE-COUNTER, or is the internal sum accumulator established by
Report Writer.

• In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and
REPORT FOOTING report groups, SOURCE cannot reference controls
or data items referencing controls.

• To map PAGE-COUNTER when there is more than one report in a
program, code SOURCE PAGE-COUNTER OF reportname.

• In a DETAIL type entry, use CHANGE INDICATE instead of GROUP
INDICATE to suppress printing the item after a page break.

• In a report mock-up, use PIC clauses instead of COBOL masks when
formatting dates and times containing / $ or :. See Report Mock-
Ups.

GROUP INDICATE Identify an item, such as a header, that prints
on the first occurrence of its report group after
a control break or a page advance. You can use
GROUP INDICATE when a DETAIL type defines
a printable item; specify GROUP INDICATE for
elementary items. If the RED keyword does not
contain a PAGE or a CONTROL clause, a GROUP
INDICATE item prints the first time its DETAIL
line prints after INITIATE processing. See also
"Comments" below.

iterative expression Generate multiple SOURCE statements for
suffixed data items or elements of an array. See
the APS User’s Guide chapter Creating Reports
with Report Writer.

JUSTIFIED RIGHT Right justify the field value. COBOL usage rules
apply.

PIC picclause Specify the format of dataname. If dataname is
a report mock-up field instead of a Working-
Storage field, the next matching COBOL
picture in the report mock-up is the picclause
for dataname.
Reference

440

rfpubb.book Page 440 Tuesday, February 19, 2002 9:56 AM
Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 DETAIL-LINE TYPE IS DETAIL.
 MOCKUP LINE 16
 SOURCE WS-LOCATION-CODE GROUP INDICATE
 SOURCE WS-LAST-COUNT-MONTH PIC 99
 SOURCE WS-LAST-COUNT-DAY PIC 99
 SOURCE WS-LAST-COUNT-YEAR PIC 99
 SOURCE WS-QTY-IN-STOCK JUSTIFIED RIGHT
 SOURCE WS-QTY-ISSUED JUSTIFIED RIGHT
 SOURCE WS-QTY-RECEIVED JUSTIFIED RIGHT
 REFERENCE WS-NO-OF-SALES PIC 9999

Special Registers

Compatibility SQL target

Description: Use selected APS/SQL calls to reference and test special registers as
column values. Special registers include:

CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP
CURRENT TIMEZONE

Use special registers in DB-DECLARE, DB-OBTAIN, and DB-PROCESS calls
to:

• Store and display the special register values.

• Evaluate special register values in WHERE clauses for conditional
processing.

Comment: Do not use SQL function names,such as HOUR, TIMESTAMP, as column
names.

Examples: Store the value of CURRENT-DATE in a Working-Storage field.

DB-OBTAIN REC D2TAB-REC
... PM_PART_NO
... PM_COLOR (WS-COLOR)
... CURRENT DATE (WS-CURR-DATE)
... WHERE PM_PART_SHORT_DESC = ’WIDGET’
... AND PM_COLOR = ’RED’
Reference

SPNM 441

rfpubb.book Page 441 Tuesday, February 19, 2002 9:56 AM
Select rows by comparing column SHIP_DATE with the special register
CURRENT DATE.

DB-PROCESS REC D2INVEN-REC
... DB-PROCESS-ID D2INV-ID
... IN_PART_NO
... IN_PART_SHORT_DESC
... IN_QTY_ONHAND
... WHERE SHIP_DATE = CURRENT DATE

SPNM

Category: Program Painter and Specification Editor keyword (see Keywords)

Purpose Create a Special-Names paragraph in the generated program.

Syntax -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SPNM statement1
 .
 .
 .
 SPNM statement1

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SPNM C01 IS TOP-OF-PAGE

SQL

Category: Program Painter and Specification Editor keyword (see Keywords)

Compatibility: SQL target

Description: Designate a DB2 table or cursor declaration in the Working-Storage or
Linkage Section. Additionally, code native SQL statements and pass
them through, without translation, to the precompile process.
Reference

442

rfpubb.book Page 442 Tuesday, February 19, 2002 9:56 AM
Syntax: Format 1, Working-Storage and Linkage Sections:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SQL SQLdatastructurestatement
 .
 .
 .

Format 2, Procedure Division:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SQL nativecall
 . . .

Comments: • Use one SQL keyword for each SQL call. APS generates EXEC SQL
and END-EXEC statements before the first and last statements,
respectively.

• In the Data Division, the SQL keyword designates a DB2 table or one
or more cursor declarations in the Working-Storage or Linkage
Section. Use one SQL keyword for each SQL call. APS generates EXEC
SQL and END-EXEC statements before the first and last statements,
respectively.

• In the Procedure Division, start every SQL Procedure Division
statement with the SQL verb, coded in columns 12 through 72.
Begin subsequent lines of the statement with continuation ellipses.
All statements pass to the precompiler without translation. SQL
statements can be coded anywhere after the PARA, PROC, or NTRY
keywords.

Examples: Program Painter code:

-KYWD- 12--*--20---*----30----*---40---*---50---*---60---
 SQL
 DECLARE DSN8.TDEPT TABLE
 ... (DEPTNO CHAR(3) NOT NULL,
 ... DEPTNAME CHAR(36) NOT NULL,
 ... MGRNO CHAR(3) NOT NULL,
 ... ADMRDEPT CHAR(3) NOT NULL)
 REC WS-DEPARTMENT
 DEPARTMENT-NUM X3
 DEPARTMENT-NAME X36
 DEPARTMENT-MGR-NO X3
 DEPARTMENT-ADMIN X3

Reference

SQL 443

rfpubb.book Page 443 Tuesday, February 19, 2002 9:56 AM
NTRY
 SQL
 ... SELECT DEPTNO, DEPTNAME,
 ... MGRNO, ADMRDEPT
 ... INTO :DEPARTMENT-NUM,
 ... :DEPARTMENT-NAME,
 ... :DEPARTMENT-MGR-NO,
 ... :DEPARTMENT-ADMIN
 ... FROM DSN8.TDEPT
 ... WHERE DEPTNO > 0
 IF SQLCODE > +0
 PERFORM ERROR-DISPLAY

Generated code:

% &AP-GEN-VER = 1719
% &AP-PGM-ID = "TSTSQL"
% &AP-GEN-DC-TARGET = "ISPF"
% &AP-TP-ENTRY-KYWD-SEEN = 1
% &AP-SUBSCHEMA = ""
% &AP-APPLICATION-ID = "TSTSQL"
% &AP-GEN-DATE = "861219"
% &AP-GEN-TIME = "16063323"
IDENTIFICATION DIVISION.
PROGRAM-ID. TSTSQL.
AUTHOR. AP-SYSTEM GENERATED.
DATE-WRITTEN. 861219.
DATE-COMPILED. &COMPILETIME.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. &SYSTEM.
OBJECT-COMPUTER. &SYSTEM.
DATA DIVISION.
WORKING-STORAGE SECTION.
 $TP-WS-MARKER
 EXEC SQL INCLUDE SQLCA
 END-EXEC.
 EXEC SQL
 DECLARE DSN8.TDEPT TABLE /*
 (DEPTNO CHAR(3) NOT NULL, /*
 DEPTNAME CHAR(36) NOT NULL, /*
 MGRNO CHAR(3) NOT NULL, /*
 ADMRDEPT CHAR(3) NOT NULL) /*
 END-EXEC.
 01 WS-DEPARTMENT.
 05 DEPARTMENT-NUM PIC X(3).
 05 DEPARTMENT-NAME PIC X(36).
 05 DEPARTMENT-MGR-NO PIC X(3).
Reference

444

rfpubb.book Page 444 Tuesday, February 19, 2002 9:56 AM
 05 DEPARTMENT-ADMIN PIC X(3).
 $TP-COMMAREA
 $TP-ENTRY ("", "")
 SQL
 ... SELECT DEPTNO, DEPTNAME,
 ... MGRNO, ADMRDEPT
 ... INTO :DEPARTMENT-NUM,
 ... :DEPARTMENT-NAME,
 ... :DEPARTMENT-MGR-NO,
 ... :DEPARTMENT-ADMIN
 ... FROM DSN8.TDEPT
 ... WHERE DEPTNO > 0
 IF SQLCODE > +0
 PERFORM ERROR-DISPLAY

STOP RUN

Category: S-COBOL structure (see S-COBOL Structures)

Description: Return control to the operating system.

Syntax: STOP RUN

Comments: • STOP RUN can appear anywhere in an S-COBOL program.

• APS generates a STOP RUN at the end of the first paragraph of an S-
COBOL program and at the end of the first paragraph of a called
program that compiles independently of the main program.

STUB

Category: Program Painter and Specification Editor keyword (see Keywords)

Purpose: Include a program stub, or a reusable program module, that is available
to any program in the application.
Reference

Subselect Clause 445

rfpubb.book Page 445 Tuesday, February 19, 2002 9:56 AM
Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 STUB stubname

Comments: • During generation, APS inserts the program stub where the
keyword STUB appears.

• To continue programming after a stub, code another keyword.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 NTRY MSCR
 IF ENTER-KEY
 PERFORM READ-RTN (MSCR-PART-NBR,
 ... MSCR-NEW-PART-NBR,
 ... MSCR-OLD-PART-NBR,
 ... MSCR-SHORT-DESC, MSCR-UNITS,
 ... MSCR-BASE-PRICE,
 ... MSCR-DIMENSIONS,
 ... MSCR-ERR-MSG)
 ELSE
 MSCR-ERR-MSG = ’INVALID PF KEY ENTERED’
 SEND MSCR
 STUB STUBPGM
 PARA PROCESS-PARA

Subselect Clause

Compatibility: SQL target

Desciption: Create subselect clause by embedding a complete DB-OBTAIN call
within a WHERE clause.

Syntax: Embed a DB-OBTAIN call by enclosing it in parentheses. The syntax for
the embedded DB-OBTAIN is the same as that for a standard DB-
OBTAIN.

Comments: • Create subselect code in a DB-DECLARE, DB-OBTAIN, DB-PROCESS,
or DB-STORE call.

• All standard SQL requirements for a subselect clause apply to the
embedded DB-OBTAIN.
Reference

446

rfpubb.book Page 446 Tuesday, February 19, 2002 9:56 AM
• The number and type of columns coded must match the DB-OBTAIN
column sequence; both calls must specify columns from different
tables.

• When you code a DB-STORE call, make sure that you:

• Make the number of selected columns for DB-STORE match the
number of columns in the result table for the subselect.

• Do not code the same copylibname-REC in both the DB-STORE
and subselect calls.

• Do not code DB STORE FROM dataname.

• Do not code alternate values for any columns in DB-STORE.

• Do not enclose the subselect statement in parentheses, as you
do for other DB calls.

Example: DB-OBTAIN REC A.D2TAB-REC
... PM_PART_NO PM_UNIT_BASE_PRICE
... WHERE EXISTS
... (DB-OBTAIN REC D2INVEN-REC
... WHERE IN_PART_NO = A.PM_PART_NO)
DB-DECLARE D2MAST-CURSOR D2TAB-REC
... PM_PART_NO PM_UNIT_BASE_PRICE PM_COLOR
... WHERE PM_PART_NO IN
... (DB-OBTAIN
... REC D2INVEN-REC IN_PART_NO
... WHERE IN_QTY_ONHAND > 100)
... AND PM_UNIT_BASE_PRICE BETWEEN 50 and 100
DB-PROCESS REC D2TAB-REC
... PM_PART_NO PM_UNIT_BASE_PRICE PM_COLOR
... WHERE PM_UNITS <
... (DB-OBTAIN REC D2TAB-REC
... AVG(PM_UNITS))
DB-STORE REC D2INVEN-REC
... IN_PART_NO IN_QTY_ONHAND
... DB-OBTAIN REC D2TAB-REC
... PM_PART_NO PM_PART_SHORT_DESC
... WHERE PM_UNITS > ’99’
Reference

SUM 447

rfpubb.book Page 447 Tuesday, February 19, 2002 9:56 AM
SUM

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Creating Reports with Report Writer.)

Compatibility: Batch environments

Description: Sum data items, and generate an internal SUM accumulator for a
SOURCE or REFERENCE data field to be used in a control footing group.

Syntax: SUM|+ [IS] dataname [iterativeexpression|dataname] ...
 [UPON detlineidentifier [detlineidentifier] ...]
 [RESET [ON] [FINAL] controlname]
 [DATA-NAME [IS] fieldname]
 [PICTURE|PIC [IS] picclause]

Parameters: dataname Data item to reference; can be report mock-up
field or a Working-Storage field. Define as a
numeric data item. See also "Comments"
below.

DATA-NAME fieldname Name a sum accumulator established by a
SUM or REFERENCE clause. Do not define
fieldname in Working-Storage. At generation,
APS inserts fieldname after the level number
in the generated report group. DATA-NAME
moves the value of the internal SUM
accumulator to fieldname.

Code DATA-NAME when a SUM UPON clause
references DETAIL report group, when the
program references a sum accumulator, or
when a sum accumulator requires a data name
for qualification.

iterative expression Generate multiple SUM statements for
numerically suffixed data items or elements of
an array. See the Iterative Expressions topic in
the APS User’s Guide chapter Creating Reports
with Report Writer"
Reference

448

rfpubb.book Page 448 Tuesday, February 19, 2002 9:56 AM
Comments: • To set up a SUM accumulator, identify the data field with a SOURCE
or REFERENCE on the detail line, and sum it with a SUM clause on
the control footing line. APS adds the value of dataname1 to its
internal sum accumulator each time the dataname1 data item prints
for a detail group.

• SUM is valid for a CONTROL FOOTING report group only. It follows
MOCKUP or OVERPRINT clause.

• The internal SUM accumulator value prints with the CONTROL
FOOTING group and then clears.

• If the description for a printable data item contains a SUM clause,
the internal SUM accumulator serves as a data item, that is, Report
Writer moves the internal accumulator value to the data item for
printing.

• APS sums data field values into internal SUM accumulators during
GENERATE and TERMINATE processing.

Examples: Each time DEBIT-LINE generates, add SOURCE amount to the DEBIT-LINE
and CREDIT-LINE amount accumulators.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 DEBIT-LINE TYPE IS DETAIL.
 MOCKUP LINE 1
 SOURCE AMOUNT PIC 9(5)
 01 CREDIT-LINE TYPE IS DETAIL.
 MOCKUP LINE 2
 SOURCE AMOUNT PIC 9(5)

PIC picclause Specify the format of dataname. If dataname
is a report mock-up field instead of a Working-
Storage field, the next matching COBOL
picture in the report mock-up is the picclause
for dataname. Picclause determines the size of
the internal SUM accumulator.

RESET controlname Set the SUM accumulator to zero after a
control break on controlname. If RESET is not
coded, the internal SUM accumulator resets to
zero after each control break.

UPON detline-identifier Sum on the printing of a specific detail line,
when there is more than one detail line.
Detlineidentifier is the name of DETAIL report
group.
Reference

SUM 449

rfpubb.book Page 449 Tuesday, February 19, 2002 9:56 AM
 01 TYPE IS CONTROL FOOTING WS-PRODUCT-CODE.
 MOCKUP LINE 3
 SUM AMOUNT UPON DEBIT-LINE PIC 9(6)
 SUM AMOUNT UPON CREDIT-LINE PIC 9(6)

Print CONTROL FOOTING and RESET the SUM accumulator to zero after
the final control break.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE.
 MOCKUP LINE 15 THRU 21
 SUM WS-QTY-IN-STOCK RESET ON FINAL

RESET the WS-LOCAL-SALES field to continue accumulating a sum until
the WS-REGION-SALES control break occurs.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 RED SALES REPORT
 CONTROLS ARE FINAL WS-REGION-SALES
 WS-LOCAL-SALES
 01 TYPE IS CONTROL FOOTING WS-LOCAL-SALES.
 MOCKUP LINE 5
 SUM WS-LOCAL-SALES RESET ON
 WS-REGION-SALES

Move the value of the NO-OF-SALES accumulator to the TOT-SALES
field.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE.
 MOCKUP LINE 12
 SUM NO-OF-SALES DATA-NAME TOT-SALES

Print all values for WS-QTY-IN-STOCK on the detail line in the report
and the total of those values in the control footing of the report. Print
the total only for WS-NO-OF-SALES in the control footing. When the
detail line is prints, add the REFERENCE field value to the SUM
accumulator.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 DETAIL-LINE TYPE IS DETAIL.
 MOCKUP LINE 16
 SOURCE WS-QTY-IN-STOCK PIC ZZZ,ZZ9
 REFERENCE WS-NO-OF-SALES PIC 9999
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE.
 MOCKUP LINES 17 THRU 23
 SUM WS-QTY-IN-STOCK PIC Z,ZZZ,ZZ9
 SUM WS-NO-OF-SALES PIC ZZZ9
Reference

450

rfpubb.book Page 450 Tuesday, February 19, 2002 9:56 AM
SUPPRESS (IMS DB Option)

Compatibility: IMS DB target

Description: Suppress the generation of IMS database calls when prototyping under
ISPF.

Description: The &IM-SUPPRESS-DB-CALL field prevents DB calls from being
generated in your program. During prototyping, this call enables you to
code APS/IMS DB calls before you are ready to access the database.

This field resides in the APS CNTL file APSDBDC; set it to YES to suppress
DB call generation; the default is NO.

Note: In Online Express, this is handled via the Database Calls field in
the Express Parms screen in Online Express.

SUPPRESS (Report Writer)

Category: Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Creating Reports with Report Writer.)

Description: Inhibit printing a report group named in a USE BEFORE REPORTING
clause.

Syntax: SUPPRESS PRINTING

Comments: • Use SUPPRESS only with USE BEFORE REPORTING.

• This structure suppresses the following report group functions.

• Line printing

• LINE NUMBER and NEXT GROUP processing

• LINE-COUNTER adjusting
Reference

SUPRA 451

rfpubb.book Page 451 Tuesday, February 19, 2002 9:56 AM
• APS generates the COBOL statement MOVE 1 TO PRINT-SWITCH.
When this statement is processed the warning message, NEXT
GROUP WILL BE SUPPRESSED, displays.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 NTRY OPEN INPUT
 OPEN OUTPUT
 PERFORM MAIN-PARA
 DPAR SUPPRESS-CH-REGION SECTION
 USE BEFORE REPORTING CH-REGION
 DPAR SUPPRESS-CH-REGION-PARA
 IF FIRST-FLG = TRUE
 SUPPRESS PRINTING

SUPRA

Category: S-COBOL structure (see S-COBOL Structures)

Description: Code native SUPRA DBMS procedural statements in the Procedure
Division of an S-COBOL program.

Syntax: S-COBOL source input

WS
01 [viewname] INCLUDE logicalviewname [(userfieldlist)]
 .
 .
 .
 SUPRA suprastatement
 ... suprastatement

COBOL source output

WORKING-STORAGE SECTION.
01 [viewname] INCLUDE logicalviewname [(userfieldlist)]
 . . .
 suprastatement
 suprastatement
 . . .
Reference

452

rfpubb.book Page 452 Tuesday, February 19, 2002 9:56 AM
Comments: • SUPRA statements pass through the APS precompiler unchanged.

• You must code a native SUPRA INCLUDE statement in the Working-
Storage Section.

• PASS can be substituted for SUPRA to get the same results.

SY* Keywords

Description: Specify in a program the location where the generator places source
code.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYBT source
 SYEN source
 SYDD source
 SYFD source
 SYIO source
 SYLT source
 SYLK source
 SYM1 source
 SYM2 source
 SYRP source
 SYWS source

Locations in Generated Code

Location Keyword Explanation

Top of program SYM1 At the beginning of the program,
before rule libraries that you
include at the beginning of the
program

SYM2 After rule libraries that you include
at the beginning of the program

Environment Division SYEN In the Environment Division, after
the Special-Names paragraph

SYIO In the Input-Output Section, after
rule libraries that you include at the
beginning of the Input-Output
Section
Reference

SY* Keywords 453

rfpubb.book Page 453 Tuesday, February 19, 2002 9:56 AM
Comments: • The effect of a SY* keyword ends with the appearance of another
keyword in the KYWD column.

• The generation process shifts the source to start in column 8.

Examples: Include a rule at the top of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % INCLUDE USERMACS(MY-RULE)

Include a rule at the bottom of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYBT % INCLUDE USERMACS(MY-RULE)

Place a variable assignment statement at the top of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 &TP-USER-LEN = 49

Data Division SYDD At the beginning of the Data
Division

SYFD In the File Section, after rule
libraries that you include at the
beginning of the File Section

SYWS In the Working-Storage Section,
after rule libraries and data
structures that you include in
Working-Storage

SYLT In the Linkage Section, after rule
libraries and data structures that
you include at the beginning of
Linkage

SYLK In the Linkage Section, after source
code that you include with the SYLT
keyword

SYRP In the Report Section, after any rule
libraries that you include at the
beginning of the Report Section

Procedure Division SYBT At the end of the program

Location Keyword Explanation
Reference

454

rfpubb.book Page 454 Tuesday, February 19, 2002 9:56 AM
Include a copybook in Working-Storage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYWS % INCLUDE COPYLIB(MY-COPYBOOK)

Include a copybook in Linkage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK % INCLUDE COPYLIB(MY-COPYBOOK)

System Service Calls

Category: IMS system service calls

Compatibility: IMS DB and IMS DC targets

Description: Ensure successful recovery from error conditions. Monitor and control
database services; define regular checkpoints from which you can
request a service for the database and check for error conditions;
perform error recovery from the last successful checkpoint status check.

Syntax: IM-CHKP pcbname checkpointID
... [length1 dataarea1 [... length7 dataarea7

IM-XRST pcbname
... [length1 area1 [... length7 area7]]
... [checkpointID maxiolength]
IM-CHKP-OSVS pcbname checkpointID
IM-DEQ pcbname deqcharacter
IM-GSCD pcbname
IM-LOG pcbname logcode loglength message
IM-ROLB pcbname [msgarea]
IM-ROLL
IM-STAT-DBAS-FULL pcbname
IM-STAT-DBAS-UNFORMATED pcbname
IM-STAT-DBAS-SUMMARY pcbname
IM-STAT-VBAS-FULL pcbname
IM-STAT-VBAS-UNFORMATED pcbname
IM-STAT-VBAS-SUMMARY pcbname
Reference

System Service Calls 455

rfpubb.book Page 455 Tuesday, February 19, 2002 9:56 AM
Parameters:

Comments: • These calls generate Working-Storage areas as arguments.

• For checkpoint/restart functions:

• These calls neither redefine the IMS facilities nor change the
considerations for their use. Consult your appropriate IMS
reference manuals for information.

• Checkpoint and restart are normally not applicable to online
programs. This is because the database updates associated with
processing an online message represent a single work unit,
which executes for only a brief period of time.

• Batch and BMP programs may require this facility based on the
expected duration of execution, number of database updates,
and the potential for conflict with other concurrent processes.

• Checkpoint calls establish both an IMS commit point and a place
where the program can be restarted. There are two types of
checkpoints.

checkpointid An 8-character COBOL data name or a literal
that specifies the ID for this checkpoint

dataarea Name of the data area designated in Working-
Storage

deqcharacter A COBOL data name or single character literal
string

length Length of data area as defined in Working-
Storage

logcode A COBOL data name or literal character string
containing a code that must be greater than or
equal to X’A0’ and less than or equal to X’E0’

loglength Length of record, excluding the 5-byte header

maxiolength Length of the largest program I/O area; can be
variable or literal; default is the longest path
call I/O area, or 0 if no path call exists

message A COBOL data name or literal string

msgarea Name of area in program where IMS returns the
message segment being processed

pcbname Database view; can be up to 20 characters;
default is IO-PCB
Reference

456

rfpubb.book Page 456 Tuesday, February 19, 2002 9:56 AM
Symbolic checkpoints can specify up to seven data areas in the
program to checkpoint. The program restarts from the last
checkpoint call issued, before the abend or from a specific
checkpoint named in the restart call IM-XRST. APS restores
checkpoint areas to the condition they were when the program
abended.

Basic checkpoints do not restart the program; you must provide
your own logic. No data areas can be restored.

• Use IM-CHKP for both symbolic and basic checkpoint processing.

• Use IM-XRST for symbolic checkpoint and restart processing.

• IM-XRST is the first IMS call executed by the program. Next, the
program should interrogate the IM-XRST-AREA field (generated
by this macro). If the field is not equal to spaces, perform restart
processing.

• A checkpoint cancels all database positioning. After a
checkpoint or restart, the program must reestablish the
database positioning with fully qualified DB-OBTAIN calls.

• In batch programs, the program needs the compatibility option
available in its PSB (CMPAT=YES).

• Symbolic checkpoints do not support OS/VS files; basic
checkpoints do not support OS/VS or GSAM files.

Example: The following code is from an APS batch program using a symbolic
checkpoint restart.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 WS CHKPT-WORKAREAS
 CHKPT-ID
 FILLERX4 V’CID1’
 CHKPT-ID-CTR 9(4) V 0
 CHKPT-LIMIT S9(5) V 0 COMP-3
 88 CHKPT-LIMIT-REACHED V+50
 WS CHECKPOINT-AREA-1
 PREV-PART-NO X8 V LOW-VALUES
 NTRY
 IM-XRST IO 8 CHECKPOINT-AREA-1
 IF NOT IM-OK
 PERFORM ERROR-PARA
 /* IF IM-XRST-AREA IS NOT BLANK,
 /* PROGRAM IS BEING RESTARTED
Reference

System Service Calls 457

rfpubb.book Page 457 Tuesday, February 19, 2002 9:56 AM
 IF IM-XRST-AREA NOT = SPACES
 MOVE IM-XRST-CHECKPOINT TO CHKPT-ID
 TRUE RESTART
 ELSE
 /* PERFORM FIRST CHECK POINT
 PERFORM SYMB-CHKPT-RTN
 REPEAT
 PERFORM READ-DB
 UNTIL END-ON-REC
 PERFORM PROCESS-DB-REC
 /* INCREMENT COUNTER FOR EACH RECORD READ
 CHKPT-LIMIT = CHKPT-LIMIT + 1
 IF CHKPT-LIMIT-REACHED
 PERFORM SYMB-CHKPT-RTN
 PARA SYMB-CHKPT-RTN
 /* INCREMENT CHKPT-ID CNTR
 CHKPT-ID-CTR = CHKPT-ID-CTR + 1
 IM-CHKP IO CHKPT-ID
 ... 8 CHECKPOINT-AREA-1
 IF NOT IM-OK
 PERFORM ERROR-PARA
 CHKPT-LIMIT = 0

The following code:

$IM-CHKP ("IO", "’MYCHKP’", 25, "AREA-1",
% ... 37, "AREA-2")
$IM-CHKP ("IO", "MY-BASIC-CHKP-NAME")
$IM-XRST ("IO", 25, "AREA-1")

Generates in Working-Storage:

01 IM-CBLTDLI-ARGUMENTS.
 05 IM-CHKP PIC X(4) VALUE ’CHKP’.
 05 IM-DEQ PIC X(4) VALUE ’DEQ ’.
 05 IM-LOG PIC X(4) VALUE ’LOG ’.
 05 IM-STAT PIC X(4) VALUE ’STAT’.
 05 IM-XRST PIC X(4) VALUE ’XRST’.
 05 OSVSCHKP PIC X(8) VALUE’OSVSCHKP’.
 05 IM-CALL-FUNCTION PIC X(4).
 05 IM-IO-AREA-LEN PIC S9(9) COMP VALUE +0.
 05 IM-IO-MAXAREA-LEN PIC S9(9) COMP VALUE +0.
 05 IM-LEN-25 PIC S9(9) COMP VALUE +25.
 05 IM-LEN-37 PIC S9(9) COMP VALUE +37.
01 IM-LOG-AREA.
 05 IM-LOG-LEN PIC S9(4) COMP.
 05 FILLER PIC S9(4) COMP VALUE +0.
 05 IM-LOG-CODE PIC X.
 05 IM-LOG-RECORD PIC X(55).
Reference

458

rfpubb.book Page 458 Tuesday, February 19, 2002 9:56 AM
01 IM-DEQ-CHR PIC X.
01 IM-XRST-AREA.
 05 IM-XRST-CHECKPOINT PIC X(8).
 05 FILLER PIC X(4) VALUE SPACES.
01 IM-CHECKPOINT-ID PIC X(8).
01 IM-STAT-FUNCTION.
 05 FILLER PIC X(4).
 05 IM-STAT-FORMAT PIC X.
 05 FILLER PIC X(4).
01 IM-STATISTICS PIC X(120).

Generates in the Procedure Division:

MOVE ’MYCHKP’
... TO IM-CHECKPOINT-ID
IF IM-IO-MAXAREA-LEN < IM-IO-AREA-LEN
 MOVE IM-IO-AREA-LEN
... TO IM-IO-MAXAREA-LEN
CALL ’CBLTDLI’ USING
... IM-CHKP IO-PCB
... IM-IO-MAXAREA-LEN
... IM-CHECKPOINT-ID
... IM-LEN-25 AREA-1
... IM-LEN-37 AREA-2
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
MOVE MY-BASIC-CHKP-NAME
... TO IM-CHECKPOINT-ID
CALL ’CBLTDLI’ USING
... IM-CHKP IO-PCB
... IM-CHECKPOINT-ID
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
MOVE ’MYOSVSCP’
... TO IM-CHECKPOINT-ID
CALL ’CBLTDLI’ USING
... IM-CHKP IO-PCB
... IM-CHECKPOINT-ID
... IM-OSVSCHKP
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
MOVE ’A’ TO IM-DEQ-CHR
CALL ’CBLTDLI’ USING
... IM-DEQ IO-PCB
...IM-DEQ-CHR
Reference

System Service Calls 459

rfpubb.book Page 459 Tuesday, February 19, 2002 9:56 AM
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
COMPUTE IM-LOG-LEN = 38 + 5
MOVE LOG-CODE-1 TO IM-LOG-CODE
MOVE LOG-MESSAGE-1
... TO IM-LOG-RECORD
CALL ’CBLTDLI’ USING
... IM-LOG IO-PCB
... IO-LOG-AREA
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
COMPUTE IM-LOG-LEN = 55 + 5
MOVE LOG-CODE-2 TO IM-LOG-CODE
MOVE LOG-MESSAGE-2
... TO IM-LOG-RECORD
CALL ’CBLTDLI’ USING
... IM-LOG IO-PCB
... IO-LOG-AREA
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
MOVE ’VBAS’
... TO IM-STAT-FUNCTION /* CLR TAIL
MOVE ’S’ TO IM-STAT-FORMAT
CALL ’CBLTDLI’ USING
... IM-STAT BE1PARTS-PCB
... IM-STATISTICS
... IM-STAT-FUNCTION
MOVE BE1PARTS-PCB-STATUS
... TO IM-STATUS
MOVE BE1PARTS-PCB
... TO IM-DB-PCB
MOVE SPACES
... TO IM-XRST-AREA
IF IM-IO-AREA-LEN > IM-IO-MAXAREA-LEN
 MOVE IM-IO-AREA-LEN
... TO IM-IO-MAXAREA-LEN
CALL ’CBLTDLI’ USING
... IM-XRST IO-PCB
... IM-IO-AREA-LEN
... IM-XRST-AREA
... IM-LEN-25 AREA-1
MOVE IO-PCB-STATUS
... TO IM-STATUS
... TP-STATUS
Reference

460

rfpubb.book Page 460 Tuesday, February 19, 2002 9:56 AM
TERM

Category: Data communication call (see Data Communication Calls)

Description: Terminate programs and transaction operations.

Under ISPF Dialog, perform internal program cleanup, terminate the
program via GOBACK statement, and return control to the calling
program.

Syntax: [TP-]TERM

Comments: CICS

• APS generates a CICS RETURN without a TRANSID or COMMAREA.
Program control returns to either the next higher-level linked
program or to CICS.

• Code TERM in a linked-to program that returns to the calling
program and ensures that TP-COMMAREA data is passed back.
When returning to a calling program, TP-COMMAREA moves to
DFHCOMMAREA.

• Call does not terminate an active PSB that is passed via LINK.

IMS DC

Use TERM after sending output messages (SEND or MSG-SW) with
CONTINUE. Do not use TERM prior to sending at least one response; this
causes a user terminal in response mode to remain locked, awaiting a
response.

Example: Terminate a program when SCRA-FUNCTION = ’E’ or PF3 is pressed.

IF SCRA-FUNCTION = ’E’ OR PF3
 TERM
Reference

TERMINATE 461

rfpubb.book Page 461 Tuesday, February 19, 2002 9:56 AM
TERMINATE

Category: Report Writer statement (see Report Writer Structures and the Report
Writer chapter in your APS User’s Guide)

Compatibility: Batch environments

Description: End report processing. TERMINATE:

• Adds all SUM operands and saves their values

• Saves current values of all CONTROL items

• Produces all CONTROL FOOTING report groups beginning with the
minor CONTROL FOOTING and ending with FINAL

• Produces PAGE FOOTING and PAGE HEADING report groups if a
page break occurred

• Produces REPORT FOOTING report group

• Resets all CONTROL items to their values when TERMINATE was
executed

Syntax: TERMINATE reportname1 [,reportname2] ...

Parameter:

Comments: • If GENERATE processing was not executed for a report between its
INITIATE and TERMINATE, TERMINATE does not produce any report
groups or perform any related processing. If INITIATE processing
does not execute, TERMINATE does not execute.

• TERMINATE does not close the report file; to do so, code a COBOL
CLOSE statement. TERMINATE every INITIATEd report before a
CLOSE.

reportname Identify the report. Define reportname in a RED
statement in the Report Section of the Data
Division.
Reference

462

rfpubb.book Page 462 Tuesday, February 19, 2002 9:56 AM
TP-BACKOUT

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS and IMS DC targets

Pupose ABEND the program.

Syntax: CICS

TP-BACKOUT [ABORT[(name)]|NOABORT]

IMS DC

TP-BACKOUT [ABORT|NOABORT]

Parameters: CICS

IMS DC

Comments: IMS DC

• Use ABORT if the detected error prevents other messages from
processing successfully.

• Use NOABORT if the detected error is specific to the processing
message.

• This call invokes the IMS dynamic backout feature, canceling all
database updates and messages sent since running the program or
since receipt of the most recent input message.

ABORT(name) Invoke CICS ABEND to terminate task. Name
specifies a formatted dump of main storage; can
be literal or COBOL data name (maximum 4
characters).

NOABORT Nonfunctional--allowed for compatibility with
IMS.

ABORT Cancel program and do not reschedule.

NOABORT Default. Return next input message for
processing.
Reference

TP-COMMAREA 463

rfpubb.book Page 463 Tuesday, February 19, 2002 9:56 AM
• To send a message and use TP-BACKOUT, use the EXPRESS keyword
with either SEND or MSG-SW.

• Coding NOABORT calls an IMS ROLB with the current input message
discarded; ABORT calls an IMS ROLL.

• The IMS option of issuing a ROLB with an IOAREA to reread the
current input message is not supported by TP-BACKOUT. For further
information on ROLL and ROLB, see the appropriate IMS manuals.

Examples: The following three examples execute identically. Each terminates a
task abnormally by invoking a CICS ABEND code.

TP-BACKOUT
TP-BACKOUT ABORT
TP-BACKOUT NOABORT

Specify a recovery option and code name to identify a main storage
dump related to the task.

TP-BACKOUT ABORT(’PGM1’)

TP-COMMAREA

CICS

Description: TP-COMMAREA generates a Working-Storage record for passing data
between programs. This record contains APS information as well as user
data.

There is no need to code a TP-COMMAREA call; APS generates it. The
value of &TP-USER-LEN--the default is 80--determines the size of TP-
USERAREA, the user portion of TP-COMMAREA. You can accept the APS
default of a single Commarea field, TP-USERAREA, or redefine TP-
USERAREA as multiple Commarea fields.

The following calls pass a Commarea.

SEND Send a screen to the terminal and terminate the program.
CICS saves the data stored in the TP-COMMAREA and
makes it available to the next program when APS returns
the screen to CICS.
Reference

464

rfpubb.book Page 464 Tuesday, February 19, 2002 9:56 AM
You can redefine TP-USERAREA to fit program requirements.

• Code the redefinition in the Data Structure Painter. You must also
specify the Commarea redefinition in Application View--code its
name in the Data Str field and specify its type as CA (Commarea).

• Code the redefinition in the Program Painter. Two keywords are
available to redefine TP-USERAREA--CA, where you code the
redefinition in Data Structure Painter syntax, CA05 and CA, where
you code it in COBOL syntax.

Optionally, you can code the redefinition in a copybook or rule that you
include.

Example: Redefine TP-USERAREA in the Program Painter.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % * SET THE LENGTH OF TP-USERAREA TO
 % * 21 BYTES
 % &TP-USER-LEN = 21
 CA AACA-USERAREA
 CA-DATE X8
 CA-TIME X8
 CA-CUST-NUMBER X5
-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % * SET THE LENGTH OF TP-USERAREA TO
 % * 21 BYTES
 % &TP-USER-LEN = 21
 CA05 AACA-USERAREA
 10 CA-DATE X8
 10 CA-TIME X8
 10 CA-CUST-NUMBER X5

Redefine TP-USERAREA in the Data Structure Painter.

AACA-USERAREA
 CA-DATE X8
 CA-TIME X8
 CA-CUST-NUMBER X5

LINK Link to a subprogram, passing it the TP-COMMAREA
address. Define COMMAREA identically in each program.

XCTL Transfer control to another program, passing a copy of TP-
COMMAREA. Define TP-COMMAREA identically in both
programs.
Reference

TP-COMMAREA 465

rfpubb.book Page 465 Tuesday, February 19, 2002 9:56 AM
Each of the above generates:

01 TP-COMMAREA
 .
 .
 .
01 FILLER REDEFINES TP-COMMAREA.
 05 FILLER PIC X(40).
 05 TP-USERAREA PIC X(21).
 05 AACA-USERAREA REDEFINES TP-USERAREA.
 10 CA-DATE PIC X(08).
 10 CA-TIME PIC X(08).
 10 CA-CUST-NUMBER PIC X(05).

IMS DC

Description: TP-COMMAREA coordinates the placement of the APS-generated
Commarea structure with a user-provided redefinition of that structure.
Use it only with conversational IMS programs--nonconversational IMS
programs do not use a Commarea.

In IMS, the Commarea is called a SPA (Scratch Pad Area). Its reserved
prefix includes an IMS LLZZ field, the input trancode, and the APS
invocation mode flag.

There is no need to code a TP-COMMAREA call; APS generates it. The
value of &TP-USER-LEN--the default is 0--determines the size of TP-
USERAREA, the user portion of TP-COMMAREA. You can accept the APS
default of a single Commarea field, TP-USERAREA, or redefine TP-
USERAREA as multiple Commarea fields. You must define the
Commarea in Working-Storage.

To redefine TP-USERAREA as a group-level data structure, the length
must be the same as the value specified for &TP-USER-LEN. A CA01
keyword generates an 05-level REDEFINES TP-USERAREA statement.

To generate a single-field Commarea in Working-Storage called TP-
USERAREA, assign a value to the APS variable &TP-USER-LEN. Code the
following on one line.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % &TP-USER-LEN = number

• SYM1 indicates &TP-USER-LEN is a Customizer variable and places
the variable at the top of the program.
Reference

466

rfpubb.book Page 466 Tuesday, February 19, 2002 9:56 AM
• &TP-USER-LEN = number specifies the size of TP-USERAREA; it
should be large enough to store all fields of data on the screen that
the program receives. Caution: An undefined &TP-USER-LEN
defaults to zero; when prototyping, the default is 2048.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % &TP-USER-LEN = 100
 CA05 MY-REDEF
 10 CA-FLD-A PIC X(10).
 10 CA-FLD-B PIC S9(4) COMP.
 10 CA-FLD-C PIC X(20).

Generated source:

% &TP-USER-LEN = 100
IDENTIFICATION DIVISION
 .
 .
WORKING-STORAGE SECTION.
$TP-WS-MARKER
$TP-COMMAREA
 05 MY-REDEF REDEFINES TP-USERAREA.
 10 CA-FLD-A PIC X(10).
 10 CA-FLD-B PIC S9(4) COMP.
 10 CA-FLD-C PIC X(20).

ISPF Dialog

Description TP-COMMAREA generates a Working-Storage record for passing data
between programs. This record contains APS information and user data.

There is no need to code a TP-COMMAREA call; APS generates it. The
value of &TP-USER-LEN - the default is zero - determines the size of TP-
USERAREA, the user portion of TP-COMMAREA. You can accept the APS
default of a single Commarea field, TP-USERAREA, or redefine TP-
USERAREA as multiple Commarea fields. You must define the
Commarea in Working-Storage.

To redefine TP-USERAREA as a group-level data structure, the length
must be the same as the value specified for &TP-USER-LEN. A CA01
keyword generates an 05-level REDEFINES TP-USERAREA statement.
Reference

TP-COMMAREA 467

rfpubb.book Page 467 Tuesday, February 19, 2002 9:56 AM
To generate a single-field Commarea in Working-Storage called TP-
USERAREA, assign a value to the APS variable &TP-USER-LEN. Code the
following on one line.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % &TP-USER-LEN = number

• SYM1 indicates &TP-USER-LEN is a Customizer variable and places
the variable at the top of the program.

• &TP-USER-LEN = number specifies the size of TP-USERAREA; it
should be large enough to store all fields of data on the screen that
the program receives. The default for number is zero.

To receive TP-COMMAREA as a passed data area from a calling
program, code this assignment statement before NTRY.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 % &DLG-COMMAREA-IN-LINKAGE = "YES"

The results are:

• APS generates the following in the Linkage Section.

01 DLG-LINKAGE-COMMAREA PIC X(&TP-USER-LEN).

• APS generates the Procedure Division statement with

... USING DLG-LINKAGE-COMMAREA

• Generated logic maps the data between TP-COMMAREA and DLG-
LINKAGE-COMMAREA at the following points.

• Upon program invocation, from DLG-LINKAGE-COMMAREA to
TP-COMMAREA

• Before execution of LINK or XCTL, from TP-COMMAREA to DLG-
LINKAGE-COMMAREA

• After execution of LINK or XCTL, from DLG-LINKAGE-
COMMAREA to TP-COMMAREA

• Before program termination, from TP-COMMAREA to DLG-
LINKAGE-COMMAREA

Example: Redefine TP-USERAREA.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % &TP-USER-LEN = 49
CA05 PGM-USERAREA
Reference

468

rfpubb.book Page 468 Tuesday, February 19, 2002 9:56 AM
 10 CA-EMPLOYEE-NAME PIC X(20).
 10 CA-EMPLOYEE-TITLE PIC X(20).
 10 CA-EMPLOYEE-SSN PIC X(09).

Generated source:

01 TP-COMMAREA.
 05 TP-USERAREA PIC (X49).
 05 PGM-USERAREA REDEFINES TP-USERAREA.
 10 CA-EMPLOYEE-NAME PIC X(20).
 10 CA-EMPLOYEE-TITLE PIC X(20).
 10 CA-EMPLOYEE-SSN PIC X(09).

TP-LINKAGE

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, IMS DC, and ISPF Dialog

Description: Handle addressability of Linkage Section data records in a called
program.

Syntax: TP-LINKAGE linkdataname[/copybookname|macrofilename]
... [linkdataname[/copybookname|macrofilename] ...]

Parameters:

Comments: • List data items in the order that they appear in the Linkage Section,
copybook, or macro file.

• Make sure that each linkdataname you specify is defined in the
Linkage Section. Choose one of the following methods.

• Define them yourself.

/copybookname Name of copybook that you INCLUDE or COPY
prior to this call. See also "Comments" below.

linkdataname 01-level Linkage Section data area identical to
the linkdataname in the associated call.

/macrofilename Name of macro file that you INCLUDE or COPY
prior to this call. See also "Comments" below.
Reference

TP-LINKAGE 469

rfpubb.book Page 469 Tuesday, February 19, 2002 9:56 AM
• Include (using TP-LINKAGE) a copybook or macro file that
contains the linkdatanames.

• To generate a COBOL COPY statement, instead of a % INCLUDE
statment, code &TP-COPY-LINKAGE = 1 prior to the TP-LINKAGE call.

• In Online Express, list the records in the order they pass from the
calling program.

CICS

• Use TP-LINKAGE with calls that use the SET option.

• Coding TP-LINKAGE with the SYLT keyword ensures that the APS-
generated DFHCOMMAREA is the first record in the Linkage
Section. This prevents the CICS translator from generating an
additional one.

• One BLL cell is generated per 4,096 bytes. Linkage records longer
than 4,096 bytes require additional BLL cells to establish
addressability to the entire record.

• To generate additional BLL cells, code dummy records after the
record that is greater than 4,096 bytes. A dummy record name must
be prefixed with DUMMY and its copybook name must be DUMMY.

• BLL cells are not used with COBOL/2.

IMS DC

• Code the call on the first line of the Linkage Section, and
inconjunction with NTRY or PROC to generate parameters for the
PROCEDURE DIVISION USING statement.

• Do not define PCBs with TP-LINKAGE; the subschema defines them.

ISPF Dialog

• APS provides this call for compatibility with APS/CICS and APS/IMS--
it is not required to handle addressability of Linkage Section
records.

• Make the linkdataname a PARM area and the only area defined in
the Linkage Section, if the PROGRAM CONTROL TRANSFER option is
SELECT.
Reference

470

rfpubb.book Page 470 Tuesday, February 19, 2002 9:56 AM
Examples: Define records LINK-REC-1 and LINK-REC-2. Include definitions from
USERMACS macro members LINKR1 and LINKR2.

TP-LINKAGE LINK-REC-1/LINKR1 LINK-REC-2/LINKR2

Define records LINK-REC-1 and LINK-REC-2 and copy their definitions
from COPYLIB members LINKR1 and LINKR2.

% &TP-COPY-LINKAGE = 1
TP-LINKAGE LINK-REC-1/LINKR1 LINK-REC-2/LINKR2

Define records LINK-REC-1 and LINK-REC-2, coded in the Linkage
Section.

TP-LINKAGE LINK-REC-1 LINK-REC-2

Define records LINK-REC-1 and LINK-REC-2. LINK-REC-1 has been coded
in the Linkage Section; LINK-REC-2 is copied from COPYLIB member
LINKR2.

% &TP-COPY-LINKAGE = 1
TP-LINKAGE LINK-REC-1 LINK-REC-2/LINKR2
LINK-REC-1 PIC X(100).

CICS

Linkage record containing 10,000 bytes.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK TP-LINKAGE LINK-REC
 ... DUMMY-LINK-REC-BLL1/DUMMY
 ... DUMMY-LINK-REC-BLL2/DUMMY
 LK01 LINK-REC.
 05 LINK-REC-1-4096 PIC X(4096).
 05 LINK-REC-2-8192 PIC X(4096).
 05 LINK-REC-3-10000 PIC X(1808).
 OPT PROG
 NTRY
 CIC-GETMAIN
 ... SET(LINK-REC)
 ... LENGTH(10000)
 /* PROGRAM HAS ADDRESSABILITY TO
 /* THE FIRST 4,096 BYTES.
 ADD 4096 LINK-REC--P
 ... GIVING DUMMY-LINK-REC-BLL1--P
 ... GIVING DUMMY-LINK-REC-BLL2--P
 /* PROGRAM HAS ADDRESSABILITY TO
 /* ALL 10,000 BYTES.
Reference

TP-NULL 471

rfpubb.book Page 471 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog

Define a PARM area for use by TP-LINK and TP-ENTRY. The PROGRAM
CONTROL TRANSFER option has been set to SELECT. PGM-PARM-DATA
is coded inline. Note: You can place the PGM-PARM-DATA area in
Linkage without the use of TP-LINKAGE.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK TP-LINKAGE PGM-PARM-DATA
 LK01 PGM-PARM-DATA.
 05 PGM-PARM-DATA-LEN PIC S9(04) COMP.
 05 PGM-PARM-EMPNBR PIC X(05).
 05 FILLER PIC X(95).

TP-NULL

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, IMS DC, and ISPF Dialog targets

Description: Move LOW-VALUES to all fields in a specified screen record.

Syntax: TP-|SC-NULL screenname

Parameter:

Comment: This call does not alter the field attributes.

Example: Move LOW-VALUES to all fields on screen SCRA.

TP-NULL SCRA

screenname Screen name; value must be literal.
Reference

472

rfpubb.book Page 472 Tuesday, February 19, 2002 9:56 AM
TP-PERFORM

Category: Data communication call (see Data Communication Calls)

Description: Perform a paragraph, with or without passing arguments.

Syntax: Format 1, perform a paragraph:

TP-PERFORM paragraphname

Format 2, perform a paragraph and pass arguments:

TP-PERFORM paragraphname actualargument1[[,]
... actualargument2[,] ... actualargument8]
 .
 .
 .
paragraphname ([+|-]formalargument1[[,]
... [+|-]formalargument2[,] ... [+|-]formalargument8])

Parameters: +|- A plus (+) or minus (-) sign preceding a
formalargument passes values between actual
arguments and formal arguments, as follows:

• With a plus sign (+), PERFORM passes the
actualargument value to formalargument
after the paragraph executes. The program
does not return the formalargument value to
actualargument.

• With a minus sign (-), PERFORM passes the
formalargument value to the
actualargument after the paragraph
executes.

• If there is no prefix, the PERFORM passes the
actualargument to its corresponding
formalargument. After the paragraph
executes, PERFORM passes the
formalargument back to its corresponding
actualargument.
Reference

TRUE/FALSE 473

rfpubb.book Page 473 Tuesday, February 19, 2002 9:56 AM
Comments: • When continuing a list of arguments onto one or more other lines,
do not break an argument.

• The number of actual arguments must equal the number of formal
argument names and be in the same order.

TRUE/FALSE

Category: S-COBOL structure (see S-COBOL Structures)

Description: Establish flags, set them to true and false, and then test them.

Syntax: TRUE|FALSE dataname1 [dataname2 [... datanameN]]

Comments: • For each dataname coded, S-COBOL provides an 02-level conditional
variable and an associated 88-level condition name entry in an 01
GENERATED-FLAGS area of Working-Storage. APS adds a --FLG suffix
to dataname to create the 02-level entry, and dataname itself
becomes the 88-level entry. APS always assigns VALUE ’T’ to the 88-
level condition name, never VALUE ’F’. For example:

The following code in the Procedure Division:

 .
 .
 .
TRUE THERE-ARE-NO-ERRORS
FALSE WITHIN-RANGE
 .
 .
 .

actualargument Values you send or receive from a
formalargument in the paragraph; can be
literals, identifiers, arithmetic expressions, or
index names.

formalargument Values you receive from or send to an
actualargument in the PERFORM statement.

paragraphname Name of paragraph to perform.
Reference

474

rfpubb.book Page 474 Tuesday, February 19, 2002 9:56 AM
Generates:

WORKING-STORAGE SECTION.
 .
 .
 .
02 THERE-ARE-NO-ERRORS--FLG PIC X.
 88 THERE-ARE-NO-ERRORS VALUE ’T’.
02 WITHIN-RANGE--FLG PIC X.
 88 WITHIN-RANGE VALUE ’T’.

• If, for debugging purposes, you want to display a generated flag,
add the --FLG suffix to dataname in the DISPLAY statement. For
example:

TRUE THERE-ARE-NO-ERRORS generates
MOVE TRUE TO THERE-ARE-NO-ERRORS--FLG.

• If only true statements, such as TRUE WITHIN-RANGE, or only false
statements, such as FALSE WITHIN-RANGE, are coded for dataname,
a warning message indicates a logic error.

• S-COBOL minimizes the code required to test the flags established
and set by the TRUE/FALSE verbs.

• Code WHILE THERE-ARE-NO-RECORDS instead of WHILE THERE-
ARE-NO-RECORDS--FLG = TRUE.

• Code IF NOT WITHIN-RANGE instead of IF WITHIN-RANGE--FLG =
FALSE.

Example: Set two undefined flags, THERE-ARE-NO-ERRORS and WITHIN-RANGE to
TRUE (line 3030). Define these flags in Working-Storage (88-level
condition name flags), because this is the first TRUE or FALSE statement
for either flag in this program. If the condition in line 3060 is true, set
the THERE-ARE-NO-ERRORS flag to FALSE. If either condition in line
3110 is true, set the WITHIN-RANGE flag to FALSE. As long as the value
of the THERE-ARE-NO-ERRORS flag is TRUE, perform the loop. Inside the
loop test the other flag, WITHIN-RANGE. If the value is TRUE, execute
the subordinate statement block.

-LINE- -KYWD- 12-*----20---*----30---*----40---*----50---*
 .
003030 TRUE THERE-ARE-NO-ERRORS
003031 ... WITHIN-RANGE
 .
003060 IF CODE-IN NOT NUMERIC
003070 FALSE THERE-ARE-NO-ERRORS
Reference

TRUE, FALSE, ALWAYS, NEVER 475

rfpubb.book Page 475 Tuesday, February 19, 2002 9:56 AM
 .
003110 IF COUNT > 372 OR COUNT < 50
003120 FALSE WITHIN-RANGE
 .
003150 WHILE THERE-ARE-NO-ERRORS
003160 IF WITHIN-RANGE

TRUE, FALSE, ALWAYS, NEVER

Category: S-COBOL flag (see S-COBOL Structures)

Description: TRUE, FALSE, ALWAYS, NEVER are data names whose meanings are
reserved and automatically provided by S-COBOL.

Syntax: Automatically generated in Working-Storage

01 GENERATED-FLAGS.
 02 TRUX PIC X VALUE ’T’.
 88 ALWAYS VALUE ’T’.
 88 NEVER VALUE ’F’.
 02 FALSX PIC X VALUE ’F’.

Comment: Because TRUE and FALSE are reserved words on some systems, S-COBOL
changes every occurrence of TRUE and FALSE to TRUX and FALSX, and
generates the flags accordingly.

TYPE

Category: Report Writer statement (see Report Writer Structures and the User’s
Guide chapter Create Reports with Report Writer)

Compatibility: Batch environments

Description: Identify a report group, such as a header line, detail line, or footer line.
Reference

476

rfpubb.book Page 476 Tuesday, February 19, 2002 9:56 AM
Syntax: Format 1, page header:

TYPE [IS] PAGE HEADING|PH

 [LINE [NUMBER IS] number] [.]
 PLUS number

Format 2, page footer:

TYPE [IS] PAGE FOOTING|PF
 [LINE [NUMBER IS] number]

 [NEXT GROUP [IS] number] [.]
 PLUS number

Format 3, report header:

TYPE [IS] REPORT HEADING|RH

 [LINE [NUMBER IS] number]
 PLUS number

 number
 [NEXT GROUP [IS] PLUS number] [.]
 NEXT PAGE

Format 4, report footer:

TYPE [IS] REPORT FOOTING|RF

 number
 [LINE [NUMBER IS] PLUS number] [.]
 NEXT PAGE

Format 5, control headers and footers:

TYPE [IS] CONTROL HEADING|CH [FINAL] controldataname
 CONTROL FOOTING|CF
 number

 [LINE [NUMBER IS] PLUS number]
 NEXT PAGE
 number

 [NEXT GROUP [IS] PLUS number] [.]
 NEXT PAGE
Reference

TYPE 477

rfpubb.book Page 477 Tuesday, February 19, 2002 9:56 AM
Format 6, detail lines:

detaildataname TYPE [IS] DE[TAIL]

 number
 [LINE [NUMBER IS] PLUS number]
 NEXT PAGE

 number
 [NEXT GROUP [IS] PLUS number] [.]
 NEXT PAGE

Keywords/
Parameters:

CONTROL FOOTING| CF Print group totals immediately following the
detail lines each time a control group ends, that
is, when a control break occurs.

CONTROL HEADING| CH Print heading line(s) before each detail group,
that is, when a control break occurs.

controldataname Designate control data name. Unless FINAL,
code controldataname in the corresponding
RED keyword CONTROL clause.

DETAIL|DE Specify the body group, that is, lines containing
data items of a report. See also "Comments"
below.

detaildataname Name of detail line.

FINAL Specify the highest, most inclusive, control
group. Implicit; does not have to be coded in
order to be used in a CONTROL FOOTING.

LINE number Designate the line number where the current
header, footer, or detail line prints. Number
(maximum 3 digits) must be within the defined
page limits. Specify the RED keyword PAGE
LIMIT clause.

LINE NEXT PAGE Print the current header, footer, or detail line
on a new page.
Reference

478

rfpubb.book Page 478 Tuesday, February 19, 2002 9:56 AM
LINE PLUS number Designate the line where the current header,
footer, or detail line prints, and optionally
insert blank lines. Number (maximum 3 digits)
must be within the defined page limits.

PLUS increments the line number by number,
causing blank lines. A simpler way to print
blank lines, however, is to include them in your
mock-up.

NEXT GROUP number Designate the line number where the next
TYPE entity prints (for example, a detail line,
header, or footer). Number (maximum 3 digits)
must be within the defined page limits. Specify
the RED keyword PAGE LIMIT clause. See also
"Comments" below.

NEXT GROUP PLUS
number

Designate the line where the next TYPE entity
prints, and optionally insert blank lines (for
example, a detail line, header, or footer).
Number (maximum three digits) must be within
the defined page limits.

PLUS increments the line number number,
causing blank lines. A simpler way to print
blank lines, however, is to include them in your
mock-up. See also "Comments" below.

NEXT GROUP NEXT
PAGE

Print the next TYPE entity on a new page (for
example, a detail line, header, or footer). Do
not code NEXT PAGE with PAGE FOOTING.

PAGE HEADING|PH First line(s) on each page. APS processes PAGE
HEADING as the first report group on each
page, unless a REPORT HEADING, that is not on
a page by itself, precedes it. APS ignores PAGE
HEADING on a page that contains only a
REPORT HEADING or REPORT FOOTING. See
also "Comments" below.

PAGE FOOTING|PF Last line(s) on each page. APS processes PAGE
FOOTING as the last report group on each page
of a report, unless a REPORT FOOTING, that is
not on a page by itself, follows it. APS ignores
PAGE FOOTING on a page that contains only a
REPORT HEADING or REPORT FOOTING. See
also "Comments" below.
Reference

TYPE 479

rfpubb.book Page 479 Tuesday, February 19, 2002 9:56 AM
Comments: • Enter at least one TYPE statement per report.

• Code a TYPE statement for each report group in the report, that is,
each type of report line.

• Code at least one detail line for each report, including a summary
report. Without a detail line, SUM accumulators are not summed.

• APS ignores NEXT GROUP with CONTROL FOOTING, unless
CONTROL FOOTING is at the highest level for a control break.

• Code LINE NUMBER and NEXT GROUP clauses on separate lines.

• Specify the PAGE HEADING and PAGE FOOTING report groups only
if the RED statement has a PAGE LIMIT clause. Specify the CONTROL
HEADING or CONTROL FOOTING in the RED CONTROL clause. FINAL
is implicit.

Examples: 01 TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE.
01 TYPE IS PAGE HEADING.
 SOURCE IS PAGE-COUNTER PIC ZZZ9
01 PART-DETAIL TYPE IS DETAIL.
 MOCKUP LINES 5 THRU 6
 SOURCE IS PM-PART-NO PIC XXXXXXXX
 SOURCE IS PD-LONG-DESC PIC X(50)
 SOURCE IS PM-UNIT-BASE-PRICE PIC $$$,$$9.99
01 TYPE IS CONTROL FOOTING.
 MOCKUP LINES 7
 SUM PM-UNIT-BASE-PRICE PIC $$$$,$$9.99

Print a report heading on line 20.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS REPORT HEADING LINE 20.

Insert blank lines in the report by incrementing the line number by two
before printing the footer.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS REPORT FOOTING LINE PLUS 2.

REPORT FOOTING|RF Last line(s) of the report. The TERMINATE
statement processes REPORT FOOTING as the
last report group.

REPORT HEADING|RH First line(s) of the report. It is the first report
group and processes once per report.
Reference

480

rfpubb.book Page 480 Tuesday, February 19, 2002 9:56 AM
Print two blank lines between groups. Indentation causes continuation
when coding NEXT GROUP PLUS 2.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE
 NEXT GROUP PLUS 2.

Increment the page counter after printing a line.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS REPORT HEADING
 NEXT GROUP NEXT PAGE.

UNION

Category: Database access clause

Compatibility: SQL target

Description: Unite a DB-DECLARE or DB-PROCESS call with one or more DB-OBTAIN
calls via the UNION keyword, which collects similar columns from two or
more tables into one new table. The DB-OBTAIN calls in a union can
select rows from one or many tables; the union results in a single table
containing the rows selected by each call.

Syntax: With DB-DECLARE:

DB-DECLARE cursorname [correlname1.]copylibname-REC
 .
 .
... UNION [ALL]
DB-OBTAIN REC copylibname-REC
 .
 .
 .
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]
Reference

UNION 481

rfpubb.book Page 481 Tuesday, February 19, 2002 9:56 AM
With DB-PROCESS

DB-PROCESS REC [correlname1.]copylibname-REC
 .
 .
 .
... UNION [ALL]
DB-OBTAIN REC copylibname-REC
 .
 .
 .
... [ORDER
... column1 [ASC|DESC] [...columnN [ASC|DESC]]]

Parameters: See the applicable database call for parameter descriptions.

Comments: • To create a union of tables, code all keywords and parameters for
each DB-DECLARE, DB-OBTAIN, and DB-PROCESS call just as you do
for a single call.

• When coding a UNION, the columns selected in the DB-PROCESS or
DB-DECLARE statements in the UNION determine the host variables
the FETCH uses. Specify return-fields only in the DB-DECLARE or DB-
PROCESS statements of the UNION. See the last example below.

• Because a UNION places all rows in a single table, code INTO only in
the last DB-OBTAIN call. However, if a DB-OBTAIN call joins tables,
do not code INTO, which puts the results from only one table’s host-
area into the alternate area. A joined table has only part of its
contents placed into the alternate area named by INTO.

• The column selection list for DB-DECLARE, DB-PROCESS, and each
DB-OBTAIN must adhere to standard SQL rules for UNION.

• To identify the source call that produces each row in a UNION,
include numeric and character literals in your column specifications
for each call. Each row then includes a column that identifies the
specific DB-DECLARE, DB-OBTAIN, or DB-PROCESS call that
retrieved it.

• Although you can code a literal for a column in any APS/SQL call, its
primary use is for UNIONs.

• UNION ALL includes all rows selected from the source tables in the
new table. To eliminate duplicate rows from the new table, do not
code ALL.
Reference

482

rfpubb.book Page 482 Tuesday, February 19, 2002 9:56 AM
• APS/SQL statements adhere to all other SQL requirements for tables
created through a union.

• UNION combines tables with the same number of columns. The rows
of each table must contain column sequences that match in data
type and length.

• To sort rows in a table, code the ORDER clause, as follows.

• Code ORDER only once, as the final statement in the last DB-
OBTAIN call. The ORDER clause applies to the result table
produced by UNION.

• Specify sort columns by their position in the selection list (for
example, 1 or 2), rather than by name.

Examples: Unite DB-DECLARE with one DB-OBTAIN; eliminate duplicate rows; sort
the combined table in ascending order by PM_PART_NO, then in
descending order by PM_UNIT_BASE_PRICE and PM_UNITS. Note that
the column literals STMT1 and STMT2 identify which call retrieves each
row.

DB-DECLARE D2MAST-CURSOR D2TAB-REC
... DISTINCT
... PM_PART_NO PM_UNIT_BASE_PRICE PM_UNITS ’STMT1’
... WHERE PM_PART_SHORT_DESC = :WS-PART-SHORT-DESC
... AND PM_UNIT_BASE_PRICE BETWEEN 50 AND 150
... UNION
DB-OBTAIN REC D2TAB-REC
... PM_PART_NO PM_UNIT_BASE_PRICE PM_UNITS ’STMT2’
... WHERE PM_PART_SHORT_DESC = :WS-PART-SHORT-DESC
... AND PM_UNIT_BASE_PRICE > 300
... AND PM_UNITS > 1000
... ORDER 1,2 DESC, 3 DESC

Unite DB-PROCESS with one DB-OBTAIN call. Sort the combined table in
ascending order by PM_PART_NO, then in descending order by
PM_UNIT_BASE_PRICE and PM_UNITS.

DB-PROCESS REC D2TAB-REC
... DB-PROCESS-ID D2UNION-ID
... DISTINCT
... PM_PART_NO PM_UNIT_BASE_PRICE PM_UNITS
... WHERE PM_PART_SHORT_DESC = :WS-PART-SHORT-DESC
... AND PM_UNIT_BASE_PRICE > 50
... AND PM_UNIT_BASE_PRICE < 150
... DB-LOOP-MAX=500
... UNION
Reference

UNTIL/WHILE 483

rfpubb.book Page 483 Tuesday, February 19, 2002 9:56 AM
DB-OBTAIN REC D2TAB-REC
... PM_PART_NO PM_UNIT_BASE_PRICE PM_UNITS
... WHERE PM_PART_SHORT_DESC = :WS-PART-SHORT-DESC
... AND PM_UNIT_BASE_PRICE > 300
... AND PM_UNITS > 1000
... ORDER 1,2

Because return-fields are not specified for JOB_NAME and PROC_NAME,
the host variables of those same names are used. In the case of the
literal P, no host variable exists so a return-field must be specified.
Specify return-fields only in the DB-DECLARE or DB-PROCESS
statements.

DB-PROCESS
... REC A.HTJCLD-REC
... DB-PROCESS-ID SHARED-ID
... JOB_NAME
... PROC_NAME
... REC B.HTJOBR-REC
... ’P’ (WS-HOLD-ACTION)
... WHERE B.RESOURCE = :WS-RESOURCE AND
... B.JOB_NAME = :WS-JOB-NAME
... UNION ALL
DB-OBTAIN REC A.HTJCLD-REC
... DISTINCT JOB_NAME
... PROC_NAME
... REC B.HTJSTEP-REC
... ’A’
... WHERE B.JOB_NAME = :WS-JOB-NAME
... ORDER 01 03 02

UNTIL/WHILE

Category: S-COBOL structure (see S-COBOL Structures)

Description: Form a loop with a test at the beginning that allows a subordinate
statement block to execute repeatedly, either until or while a single or
compound condition is satisfied.
Reference

484

rfpubb.book Page 484 Tuesday, February 19, 2002 9:56 AM
Syntax: Format 1:

REPEAT
 .
 .
 .
UNTIL|WHILE condition1 [AND|OR condition2
... [... AND|OR conditionN]]
 statementblock

Format 2:

REPEAT
 statementblock1
UNTIL condition
 statementblock2

Format 3:

REPEAT
 statementblock1
UNTIL condition
 statementblock2
statementblock3

Comments: • Use these statements with REPEAT to test a condition at the middle
or end of a loop.

• In the Format 2, APS tests the condition after the REPEAT
statementblock1 executes. Be careful using this format for reading
records--it can read the last record twice.

• In the Format 3, APS tests the condition after the REPEAT
statementblock1 executes, but before the UNTIL statementblock2
executes. When the UNTIL condition is true, the UNTIL
statemenblock2 does not execute.

Examples: Find the first X in a string of characters.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 PARA FIND-X
 A-SUB = 1
 UNTIL A-SUB > 100
 ... OR CHAR (A-SUB) = "X"
 A-SUB = A-SUB + 1
 IF A-SUB <= 100
 CHARACTER-COUNT = A-SUB
 ELSE
Reference

USE BEFORE REPORTING 485

rfpubb.book Page 485 Tuesday, February 19, 2002 9:56 AM
 .
 .
 .

Use WHILE to achieve the same results.

 WHILE A-SUB <= 100
 ... AND CHAR (A-SUB) NOT = ’X’

USE BEFORE REPORTING

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer)

Compatibility: Batch environments

Description: Code declarative procedures to modify any heading or footing report
group before it prints. You can specify special processing requirements,
including calculations in addition to those specified in the SUM clause,
and edits to a report line.

Syntax: USE BEFORE REPORTING identifier

Parameters:

Comments: • USE BEFORE REPORTING identifies declarative statements that
execute before HEADING or FOOTING report groups print. You
name the report group in the Report Section of the Data Division.

• A USE statement follows a section header in a declaratives section
and ends with a period and space. The section can consist of
paragraphs that define procedures.

• A USE BEFORE REPORTING statement cannot alter the value of any
control data item.

• The INITIATE, GENERATE, or TERMINATE clauses cannot appear in a
paragraph within a USE BEFORE REPORTING.

identifier Designate a HEADING or FOOTING report group.
Identifier cannot appear in more than one USE
BEFORE REPORTING.
Reference

486

rfpubb.book Page 486 Tuesday, February 19, 2002 9:56 AM
• Report Writer ensures that the designated statements execute just
before the specified report group.

• Declarative statements cannot reference non-declarative
statements; conversely, non-declarative statements cannot
reference a statement name appearing in the declarative portion.
The COBOL PERFORM statement is the only exception of a non-
declarative that refers to a declarative statement.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 NTRY OPEN INPUT
 OPEN OUTPUT
 PERFORM MAIN-PARA
 DPAR SUPPRESS-CH-REGION SECTION
 USE BEFORE REPORTING CH-REGION
 DPAR SUPPRESS-CH-REGION-PARA
 IF FIRST-FLG = TRUE
 SUPPRESS PRINTING

User Help

Category: User application Help

Description: Create the help source file.

Procedure To create the help source file, follow these steps,

1 From the APS Main Menu, enter option 2 in the Command field.
Then enter option 6 in the Command field. APS displays the User
Help Facility screen.

2 From the User Help Facility screen, enter 1 in the Command field.
APS displays the User Help Source Utility screen.

3 Select a utility to create your help source file. If you select ,
Applications, APS displays the Applications Utility screen. If you
select Data Elements, APS displays the Data Elements Utility screen.
If you select Screens, APS displays the Screens Utility screen.
Reference

User Help 487

rfpubb.book Page 487 Tuesday, February 19, 2002 9:56 AM
4 Complete the fields for the utility selected.

Field Screen Description

Context Name Data Elements Enter the context name
associated with the field to
display all the fields with
that context. Leave this
field blank to display the
fields with no context.
Enter all to display all the
fields with their contexts.

Context List Data Elements Display a context list.

Application Name Applications Enter the user application
name, or leave this field
blank and press Enter to
display a selection list.
Select a name from the
selection list by entering s
next to it.

Field Name Data Elements Type a field name or leave
this field blank to display a
selection list.

Screen Name Screens Type a screen name, or
leave this field blank to
display a selection list.

Edit Business Name All Select to assign a business
name a descriptive name
that easily identifies the
user application and its
components). If you do not
assign a business name, it
defaults to the user
application name.

Edit text All Select to create help text.

Include Screens Applications Select to create screen help.

Include Fields Applications Select to create field help.

Local Fields Applications
and Screens

Select to create field help.
Reference

488

rfpubb.book Page 488 Tuesday, February 19, 2002 9:56 AM
Examples:

Create Values All Select to create field value
help.

Help Source File
Name

All Help source file name,
TMP.APSEXT. If this file
already exists, it is overlaid.
Note: Do not use an
extension with this
filename.

Field Screen Description
Reference

USERNAME 489

rfpubb.book Page 489 Tuesday, February 19, 2002 9:56 AM
USERNAME

Category: S-COBOL structure (see S-COBOL Structures)

Description: Direct either the current APS paragraph name or one you designate to
name a procedure generated by the APS Precompiler, so that your
program follows the conventions, requirements or preferences of a
given application or installation.

Syntax: USERNAME paragraphname

Comments: • To activate any USERNAME statement, select the USERNAME option
at compile time from the APS Precompiler Options screen;
otherwise, the paragraph name for a generated procedure is G--
nnn, where G means generated and nnn begins with 001 and
increases by one for each generated paragraph name in top-down
order.

• When USERNAME is selected, APS creates paragraph names as
follows.

• APS generates single dashes instead of double dashes.
Reference

490

rfpubb.book Page 490 Tuesday, February 19, 2002 9:56 AM
• APS uses the current paragraph name, unless USERNAME is
coded in a paragraph. Then it uses that paragraph name until
the end of the paragraph.

• USERNAME paragraph applies only to names assigned for
procedures generated as the direct result of code within the
paragraph where USERNAME appears. When more than one
USERNAME is coded in a paragraph, APS assigns the first user-
designated paragraph name until it is overridden by a second name
in the APS processing sequence.

• USERNAME does not appear in the generated code.

• Be careful to avoid any naming conflicts that can arise with
USERNAME.

VALUE (Data Structure)

Category: Data Structure Painter construct (see Data Structures)

Description: Code VALUE clauses in your data structures.

Syntax: dataname PICformat
[...] [VALUE|V] ’valueclause’

Comments: • Valueclause can be as long as you need, continuing on subsequent
lines with the continuation symbol.

• You can code valueclause on the same line as dataname, if it fits
entirely on that line.

• Do not enclose numeric values in single quotation marks.

Examples: Data Structure Painter format:

-LINE- ----- Data Structure Painter ----------
000001 WRK1-FIELD-7 X(120)
000002 ... VALUE ’A LONG LITERAL MAY BE
000003 ... CONTINUED ON ONE OR
000004 ... MORE LINES’
000005 WRK1-FIELD-8 X(80)
000006 ... V ’A VALUE CLAUSE THAT SPANS
Reference

VALUE (Report Writer) 491

rfpubb.book Page 491 Tuesday, February 19, 2002 9:56 AM
000007 ... TWO OR MORE LINES MUST BEGIN
000008 ... ON ITS OWN LINE’

Generated COBOL code:

01 WRK1-FIELD-7 VALUE ’A LONG LITERAL MAY BE CONT
 ’INUED ON ONE OR MORE LINES’
 PIC X(120).
 01 WRK1-FIELD-8 VALUE ’A VALUE CLAUSE THAT SPANS
 ’TWO OR MORE LINES MUST BEGIN ON ITS OWN LINE’
 PIC X(80).

Data Structure Painter format:

-LINE- ------- Data Structure Painter ---------
000001 WRK1-FIELD-5 x(18) V’18 CHARACTERS LONG’
000002 WRK1-FIELD-6 x(13)
000003 ... V’13 CHARS LONG’

Generated COBOL code:

01 WRK1-FIELD-5 PIC X(18)
 VALUE ’18 CHARACTERS LONG’.
01 WRK1-FIELD-6 VALUE ’13 CHARS LONG’
 PIC X(13).

VALUE (Report Writer)

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer)

Compatibility: Batch environments

Description: Designate, as literals, any values that can be interpreted as PIC
characters, such as embedded Xs and 9s to a mock-up text field.

APS considers two or more consecutive COBOL PIC characters a COBOL
PIC clause and all other strings as literals, with the following exceptions.

• The letter A is a literal character

• A single hyphen is a COBOL picture character; a string of hyphens is
a literal.
Reference

492

rfpubb.book Page 492 Tuesday, February 19, 2002 9:56 AM
• A 9 or an X bounded by spaces is a COBOL PIC; any other character
surrounded by spaces is a literal.

• Lower case letters are literals, not I/O fields.

To distinguish literals from PIC strings, such as the literal EXXON, which
would be interpreted as the literal E, followed by the PIC string XX, and
the literal ON, paint the word as a data field in the report mock-up and
use the VALUE clause when coding the detail line data item description
in your program.

Syntax: VALUE "characterstring" [PIC picclause]
 [DATA-NAME [IS] fieldname]

Keywords/
Parameters:

Example: Create the report heading QUARTERLY REPORT FOR EXXPERT.

====
QUARTERLY REPORT FOR XXXXXXX
====
-KYWD- 12-*----20---*----30---*----40---*----50---*----60

"character
string"

Designate a literal as follows.

• Enter the text field on the mock-up as a
data field (that is, a series of Xs).

• Code VALUE "characterstring", where
characterstring is the literal value of the
text field.

DATA-NAME fieldname Name a sum accumulator established by a SUM
or REFERENCE clause. Do not define fieldname
in Working-Storage. At generation, APS inserts
fieldname after the level number in the
generated report group. DATA-NAME moves
the value of the internal SUM accumulator to
fieldname.

Code DATA-NAME when a SUM UPON clause
references DETAIL report group, when the
program references a sum accumulator, or
when a sum accumulator requires a data name
for qualification.

PIC clause Specify the format of characterstring.
Reference

Values, Conversion Values, and Value Ranges 493

rfpubb.book Page 493 Tuesday, February 19, 2002 9:56 AM
 01 TYPE IS PAGE HEADING.
 MOCKUP LINE 1
 VALUE ’EXXPERT’ PIC X(7)

Values, Conversion Values, and Value Ranges

Category: Screen Painter feature (see Field Edits)

Description: Ensure that the end user enters only certain values in a screen field by
assigning values and value ranges or conversion values to that field.

Note: You can assign values or conversions, but not both.

Procedure: To assign values to a field, follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 Access the Values or Conversions screen by selecting the Values or
Conversions prompt on any Field Edit screen.

3 Assign a specific value or a range of values using the following
syntax formats.

value
lowvalue TO|THRU highvalue
lowvalue UP
highvalue DOWN

4 Assign conversion values using the following syntax format.

(input1, input2, ..., inputN, I=internalvalue,
O=outputvalue)

5 To specify that the listed conversions are the only valid input values,
select the Verify Conversion Values option.

Comments: Follow these rules when you specify values.

• Separate each entry with a comma.

• Do not code commas in an entry.
Reference

494

rfpubb.book Page 494 Tuesday, February 19, 2002 9:56 AM
• Code only numeric values or ranges for numeric fields.

• Ensure that the value length meets the restrictions of the Internal
Picture format.

• Use negative values only if the internal data representation is
signed.

• Use decimals only if the internal data representation includes a
decimal.

For example:

1000 to 30000, 50 down
NORTH, SOUTH, EAST, WEST
25.5 to 35.5, 45.5 to 55.5, 100
-10 to 25, 50.5 up

Follow these rules when you specify conversions.

• Separate each entry with a comma.

• Code the internal storage conversion format in internalvalue.

• Code the output display in outputvalue.

• Ensure that the internalvalue and outputvalue are valid input data.

For example, the entry (ja,jan,i=1,o=January) means that the end
user can enter ja or jan; APS converts and stores the ja or jan to 1;
and APS displays the output as January.

Variable Length File Support

Compatibility: VSAM batch target

Description APS locates a variable length record description directly under the
associated FD and places the fixed length record descriptions in
Working-Storage.
Reference

WRITE ROUTINE 495

rfpubb.book Page 495 Tuesday, February 19, 2002 9:56 AM
WRITE ROUTINE

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer)

Compatibility: Batch environments

Description: Override the COBOL WRITE statement and execute your own routine.

Syntax: WRITE ROUTINE [IS] paragraphname

Comments: • If you code WRITE ROUTINE, you can define your report record as a
group-level record in the File Section and reference it in your WRITE
ROUTINE paragraph.

• APS generates a single-field 01-level report record when you code
REPORT IS in the FD statement. You can replace REPORT IS with a
definition of a group-level record--that is, an 01-level record with
elementary data items. APS generates a 248-byte 01-level report
record in Working-Storage, for the largest possible report; it
generates a 250-byte record if the RED keyword CODE clause is
coded.

• If FDs are not included in your program, as when accessing GSAM
files, you can still create a WRITE routine by defining an 01-level
user file record. Report Writer uses this record to generate an 01-
level report file record in Working-Storage that stores the report
records.

Example: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS.
 01 PART-STOCK-REC PIC X(80).
 FD REPORT-OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 01 USER-REPORT-RECORD.
 03 USER-REPORT-APS-PART PIC X(248).
 03 USER-REPORT-USER-PART PIC X(7).
 .
 RED STOCK-REPORT
 .
 WRITE ROUTINE IS USER-DEFINED-PARA
Reference

496

rfpubb.book Page 496 Tuesday, February 19, 2002 9:56 AM
 .
 NTRY
 .
 PARA USER-DEFINED-PARA
 .
 MOVE STOCK REPORT RECORD TO
 ...USER-REPORT-APS-PART

WS

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Define or include data structures in the Working-Storage Section.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 WS
 kywd associated data structure

Comment: Associated data structure keywords are 01, DS, REC, or ++.

Example: Use Section keywords to code Working-Storage data structures.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 IO INPUT-FILE ASSIGN TO UT-S-INPUT
 IO OUTPUT-FILE ASSIGN TO UT-S-OUTPUT
 SPNM C01 IS TOP-OF-PAGE
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 01 INPUT-REC PIC X(80).
 DS01 INPUT-REC
 FD OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 RECORDS
 REC OUTPUT-REC X80
 01 OUTPUT-REC-R REDEFINES OUTPUT-REC.
 ... COPY OUTREC.
 WS
 REC WS-INPUT-REC
 WS-IN-PART-NO N8
 WS-IN-DESC X50
 WS-IN-BASE-PRICE N6V2
Reference

XCTL 497

rfpubb.book Page 497 Tuesday, February 19, 2002 9:56 AM
 01 WS-OUT-REC
 DS05 WSOUTREC

XCTL

Category: Data communication call (see Data Communication Calls)

Compatibility: CICS, ISPF Dialog, and ISPF Prototyping, targets

Description: Transfer control from a program at one logical level to an APS or non-
APS application program at the same level, and pass the Commarea.

Syntax:

CICS Transferring to a APS program:

[TP-]XCTL programname [errorpara]
... [LENGTH(value)]
... [DLIUIB pcbname [pcbname ...]]
... [userparm [userparm] ...]

Transferring to a non-APS program:

[TP-]XCTL programname(NONAPS) [errorpara]
... [LENGTH(value)]

ISPF Prototyping

[TP-]XCTL programname[(NONAPS)]
... [LENGTH(value)]

Parameters: DLIUIB pcbname DLI interface block and the Program Control
Block required by the next program.

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

LENGTH(value) Maximum length of data; can be a literal or
COBOL data name defined as S9(04)COMP. Can
also be a partial length.
Reference

498

rfpubb.book Page 498 Tuesday, February 19, 2002 9:56 AM
Comments: • When transferring control to an APS program, XCTL transfers
control to the program specified in the call and passes the TP-
COMMAREA. Ensure that the Commarea in the transferred-to
program is the same length as the TP-COMMAREA you pass.

• When transferring control to a non-APS program, XCTL transfers
control to the specified program and passes the TP-USERAREA.
Ensure that the Commarea in the transferred-to program is the
same length as the TP-USERAREA you pass. (TP-USERAREA gets its
value from &TP-USER-LEN.) Additionally, code the following before
your NTRY statement.

% &TP-PROGRAM-INVOCATION = "NONAPS"

ISPF Dialog

XCTL, which calls a subprogram at the next lower level, operates
identically to LINK. XCTL invokes LINK, providing no additional
functionality and does not pass the COMMAREA; XCTL is provided for
upward compatibility.

Examples: Transfer control to PGM001. There is no active PSB and no passing of
arguments.

XCTL PGM001

Transfer control to the program whose name is stored in WS-
PROGNAME. There is no active PSB and no passing of arguments.

XCTL /WS-PROGNAME

Move the value PGM003 to WS-PROGNAME and transfer control to that
program. There is no active PSB and no passing of arguments.

XCTL PGM003/WS-PROGNAME

(NONAPS) The program is not an APS program.

NOTERM Do not terminate the screen display for the
calling program, that is, display screens for both
the called and the calling program.

programname Program name; can be a literal, variable, or
combination. If you precede a variable name
with a slash (/), APS moveS the literal to it.
Reference

XCTL 499

rfpubb.book Page 499 Tuesday, February 19, 2002 9:56 AM
Transfer control to PGM004; execute an error routine for an abnormal
condition. There is no active PSB and no passing of arguments.

XCTL PGM004 ERR-PARA

Transfer control to PGM005. A PSB is scheduled and the transferred-to
program uses PCB ABC-PCB.

XCTL PGM005 * DLIUIB ABC-PCB

Transfer control to a non-APS program, PROG001.

XCTL PROG001(NONAPS)
Reference

500

rfpubb.book Page 500 Tuesday, February 19, 2002 9:56 AM
Reference

501

Index

rfpubb.book Page 501 Tuesday, February 19, 2002 9:56 AM
Symbols

++ keyword 11
/* keyword 75

Numerics
01 keyword 11

use in Report Writer 11, 405
66-level data item 111
66-level number 13
77-level data item 111
77-level number 264
88-level data item 111
88-level number 14
88-level status flags 225

A
abbreviated syntax for S-COBOL 417
abnormal condition processing

IMS DB 227
IMS DC 231
SQL 233
VSAM batch 235
VSAM online 237

AB-ON-DC-CALL flag
IMS DC 230, 231

AB-ON-REC flag
IDMS DB 225
IMS DB 227

SQL 232, 233
VSAM batch 234
VSAM online 236, 237

ABORT keyword
TP-BACKOUT 462

ABRT checkpoint 288
accumulators, Report Writer

initializing 305
page 305
sum 305, 380, 438, 447

addressability, CICS 67
After DB Access control point 91
After Loop control point 91
After-Enter-Check control point 89
After-Receive-Para control point 89
ALARM keyword

DLG-SETMSG 202
ALL keyword

DB-CLOSE 121
DB-ERASE 131
DB-FREE 136
DB-OPEN 158
IDM-COMMIT 282

alternate values
DB-DECLARE 124
DB-ERASE 130
DB-MODIFY 139
DB-OBTAIN 148
DB-PROCESS 164
DB-STORE 176

ALTRESP keyword
MSG-SW 338
SEND 432

ALWAYS flag 475
AND keyword

DB-DECLARE 125
Reference

502

rfpubb.book Page 502 Tuesday, February 19, 2002 9:56 AM
DB-ERASE 131
DB-MODIFY 139
DB-OBTAIN 149
DB-PROCESS 164
DB-STORE 177

APCICSIN control file 80
APDB2IN control file 85
APDLGIN control file 85
APFEIN control file 84
APHLPINcontrol file 88
APIMSIN control file 85
Application Definition Report (AP01) 16, 407
application field edit routines 18, 251
Application Painter

accessing 24
generating reports 32, 407
user processing exits 27

Application Selection screen, user-defined
field edits 19

applications
application definition, copying 27
application definition, creating 24
components of, copying 27
components of, deleting 27

APS structures
data communication calls 101
database calls 97
Report Writer 404

APSDBDC file 81
APS-EDITS-PASSED flag 344, 347
APS-END-PROCESS flag 169

VSAM batch 258
VSAM online 259

APSMACS library 26
APS-MSG-EDIT-ERROR flag 344, 346
APS-MSG-IO-ERROR flag 344, 347
APS-PROCESS-CTR flag 169
APS-ROW-SUB data field 21
APS-VSAM-NUMREC field 259
APVSAMINcontrol file 87
AREA keyword

DB-OBTAIN 149
DB-OPEN 158
DB-PROCESS 164

arguments
passing 359, 472
performing a paragraph with 359
positional 106

AS parameter
DLG-VDEFINE 204

assembler macros, screen generation param-
eter 273

assign
see CIC-ASSIGN call

associated program, ISPF prototyping gener-
ation option 276

AT END condition 39, 296
ATTR call 40
attributes, field

assigning to a specific field 42
blinking 275
color 44, 275
cursor position, initializing 44
intensity 43, 275
light pen detection 44
list of 42
modified data tag 43
modified data tags, CICS 336
modifying at run time 40, 44
numeric keyboard locking 44, 45
overriding 40
protected 274
protected, ISPF prototype 45
resetting 71, 471
reverse video 275
underlining 275
unprotected 274

AVG function 246
SQL 265

B
BACKOUT

see TP-BACKOUT call
Before DB Access control point 90
Before Loop control point 90
Reference

503

rfpubb.book Page 503 Tuesday, February 19, 2002 9:56 AM
Before-Send-Para control point 89
BIND

see DB-BIND call
bind options, SQL 46
blank lines

suppress in output 81
BLANK WHEN ZERO Report Writer clause 438
BLL cells 469
BMS mapsets

first line of, setting 276
generated name 345
multiple-map 426
names, overriding 275

BROWSE keyword
DB-PROCESS 164

bypass field edits 84, 240
bypassing field edits 84

C
CA keyword 49, 464, 465, 466
calling subroutines/subprograms 321
CANCEL keyword

NTRY 342
canceling

see CIC-CANCEL call
canceling processing 462
CCODE parameter

DB-MODIFY 50
DB-OBTAIN 50
DB-PROCESS 50
DB-STORE 50

CHANGE INDICATE Report Writer clause 438
changing 138

see modify
CHAR function 246
CHAR function, SQL 265
Checkin screen, ENDEVOR Interface 51
checking in files

to ENDEVOR 51
checking out files

from ENDEVOR 53

Checkout screen, ENDEVOR Interface 53
checkpoint/restart 454
CIC-ADDRESS call 55
CIC-ASSIGN call 55
CIC-CANCEL call 56
CIC-DELAY call 57
CIC-DELETEQ-TD call 58
CIC-DELETEQ-TS call 59
CIC-FREEMAIN call 59
CIC-GETMAIN call 60
CIC-LOAD call 61
CIC-READQ-TD call 62
CIC-READQ-TS call 63
CIC-RELEASE call 64
CICS

addressability 67
addressability of Linkage Section records

468
APCICSIN control file 80
assigning LOW-VALUES to fields 471
BMS mapsets, for a program 426
BMS mapsets, names, overriding 275
calls, list of 102, 106
clearing screen fields 71
Commarea, passing 323, 463
conversational programming 463
data transmission 336
EIBRCODE flags 222, 236
error handling 222, 236
Exceptional Conditions 222, 236
generating program template 340
invocation modes 256
ISI-ERRORS 236
main storage area 55, 59, 60, 64
modified data tag, setting 43
NTRY customization exits 345
overriding attributes 40
passing the Commarea 497
PCB use with 375
performing paragraphs 460, 472
PF keys 411
prototyping under ISPF 27
PSB use with 375
receiving multiple screens 426
Reference

504

rfpubb.book Page 504 Tuesday, February 19, 2002 9:56 AM
resetting attributes 71
sending screen data 431
specifying as target 24, 118
status flags 236
syntax parameter 83
task processing starting 67
task processing, stopping 57
temporary storage area 59, 63, 70
terminating processing 462
transaction ID, specifying 275
transferring program control 321, 497
transient data 58, 62, 69

CICS options, use with
CIC-ADDRESS 56
CIC-SEND-TEXT 66
CIC-START 68
CIC-WRITEQ-TS 70

CIC-SCHEDULE-PSB call 65
CIC-SEND-TEXT call 66
CIC-SERVICE-RELOAD call 67
CIC-START call 67
CIC-TERM-PSB call 68
CIC-WRITEQ-TD call 69
CIC-WRITEQ-TS call 70
CKEYED keyword

DB-OBTAIN 149
DB-PROCESS 165
DB-STORE 177

CLEAR call 71
CLEAR-ATTRS call 71
clearing screen fields 71
CLOSE

see DB-CLOSE
COBOL

coding in Program Editor 356
coding in program or stub 264
coding in Specification Editor 88
differences from S-COBOL 413
edit masks in data structures 109

COBOL/
EVALUATE 243
limits 319

COBOL/2 72
CODE Report Writer clause 74, 404

coding rules
data communication calls 106
database calls 99
Report Writer 405
S-COBOL programs 415

color, screen fields 44, 275
column functions

see functions, SQL
command codes

see CCODE keyword
COMMAREA keyword

LINK 322
comments

in data structures 75
in generated source code 81
in macros 75
in program code 75

COMMIT
see DB-COMMIT call and IDM-COMMIT

call
COMMIT generation

ISPF 85, 122
compiling

COBOL II compiler, specifying 272
Component List Report (MS01) 76, 407
computational formats in data structures 110
COMT checkpoint 282
conditional processing with S-COBOL 415

AT END 39, 296
EVALUATE statement 242
FALSE statement 473, 475
IF structure 294
INVALID KEY 39, 296
NEXT SENTENCE 243, 296, 298, 431
ON SIZE ERROR 296, 297
REPEAT statement 383
TRUE statement 473
TRUE/FASE/ALWAYS/NEVER flags 475
UNTIL statement 383, 483
WHILE statement 383, 483

CONNECT 283
see IDM-CONNECT call

CONT keyword
MSG-SW 338
Reference

505

rfpubb.book Page 505 Tuesday, February 19, 2002 9:56 AM
SEND 432
CONTCOND keyword

MSG-SW 338
SEND 432

continuation
data structures 111
DB calls 99, 405
DC calls 106
IDMS DB pass-through support 289
S-COBOL structures 416
SQL pass-through support 442

CONTINUE keyword
IDM-ROLLBACK 288
SEND 432

control breaks for reports 78, 269, 379, 475
control files 80

CICS 80
DB/DC macros 81
DB/DC rules 81
field edits 84
IMS DB and DC 85
ISPF Dialog 85
SQL 85
User Help 88
VSAM 87

CONTROL FOOTING (CF) keyword 477
CONTROL HEADING (CH) keyword 477
control points

Online Express 88
standard, locations in programs, illustra-

tion 91
CONTROL Report Writer clause 78, 379, 404
conversational programming

CICS 463
IMS DC 465
ISPF Dialog 466

conversion values, field edits 493
converting

see data conversion values
COPY

see DLG-VCOPY call
COPY statement 12, 378
copying

application definitions 27

with COBOL COPY statement 12, 378
copylibs/copybooks

customize, SQL 194
including in programs 304, 452
placement 83, 452

correlation name
DB-DECLARE 125
DB-OBTAIN 149
DB-PROCESS 165

COUNT built-in function, SQL 279
COUNT function 246

SQL 265
counters, Report Writer 305
Create Like function 27
CURRENCY keyword 287
currency, establish 143
currency, establishing 143
CURRENT keyword

DB-OBTAIN 149, 154
DB-PROCESS 165

CURRENT special registers 440
cursor feedback, IMS DC generation option

276
CURSOR keyword

DB-CLOSE 121
DB-FETCH 135
DB-OPEN 158

cursor naming 125, 165
cursor processing

adding rows 175
closing 120, 160
declaring 122, 160
deleting rows 128
looping 160
modifying rows 138
opening 158, 160
processing rows 160
reading rows 134
retrieving rows 134
selecting rows 143, 160
storing rows 175
writing rows 175

cursor, positioning on screen field 44
Reference

506

rfpubb.book Page 506 Tuesday, February 19, 2002 9:56 AM
Customization Facility
limits 319

Customization Facility macros
comments 75

Customizer rules
including rule libraries 304, 452
program locations, specifying for source

452
SY* keywords 452

customizing
Online Express programs, database call

error processing 88
Online Express programs, predefined

functions 88

D

data communication calls 101
CICS 102
coding rules 106
continuation 106
control files 81
IMS DC 103
IMS Fast Path 299
ISPF Dialog 104
targets supported 101

Data Element Facility
specifying for Project and Group 377

Data Structure Definition Report (DS01) 107,
407

Data Structure Painter 109
data structures

66-level 13
77-level 111
88-level 14
application limit 320
COBOL edit masks 109
COBOL Syntax

 11
comments 75
computational formats 110
continuation 111

creating in program 377
edit masks 109
indentation 112
INDEXED BY clause 349
level numbers 112
Linkage Section 326
naming conventions 25
OCCURS clause 349
overview 109
PICTURE clauses, COBOL 112
picture formats 110, 112
REDEFINES clause 379
renames clause 13
specifying in application definition 25
specifying to program 209
USAGE clause 110
VALUE clause 14, 490
Working-Storage 496

data transmission
modified data tags, CICS 336

database calls 97
coding rules 99
continuation 99
generation of, suppressing 450
IDMS 97
IMS 98
IMS Fast Path 301, 303
IMS GSAM 280
SQL 98
targets supported 97
VSAM online 99

database calls, Online Express
control files 81
customizing 88
error handling 88

database functions, Online Express
customizing 88

DATA-NAME Report Writer clause 380, 438,
447, 491

DATE
function, SQL 246, 265
special register, SQL 440

date field edits
input 114
Reference

507

rfpubb.book Page 507 Tuesday, February 19, 2002 9:56 AM
internal picture 115
output 114

DB target
specifying 24, 118

DB/DC macros
control files 81

DB2
specifying as target 118

DB2-DEADLOCK flag
SQL 232

DB-BIND call 119, 286
DB-CLOSE call 120
DB-COMMIT call 121
DB-DECLARE call 122

DB2 unions 480
expressions 246, 265
functions 246, 265
GROUP BY clause 278
HAVING clause 278
joining tables 307
special registers 440

DB-ERASE
customizing exits 133

DB-ERASE call 128
exit points 244
VSAM batch fields 258
VSAM online fields 259

DB-FETCH call 126, 134, 172
DB-FREE call 135
DB-GET call 137
DBKEY keyword

DB-OBTAIN 149
DB-LOOP-MAX keyword 165
DB-MODIFY call 138

exit points 244
VSAM online fields 259

DBNAME keyword
DB-BIND 119

DB-OBTAIN call 143
DB2 unions 480
exit points 244
expressions 246, 265
functions 246, 265
joining tables 307

special registers, SQL 440
VSAM batch fields and flags 258
VSAM online fields and flags 259

DB-PROCESS
customizing exits 172

DB-PROCESS call 160
DB2 unions 480
exit points 244
expressions 246, 265
functions 246, 265
GROUP BY clause 278
HAVING clause 278
joining tables 307
loop counters 169
looping 169
special registers, SQL 440
VSAM batch fields and flags 258
VSAM online fields and flags 259

DB-PROCESS-ID clause 165, 169, 171, 172
DB-ROLLBACK call 174
DB-STORE call 175

exit points 244
VSAM batch fields 258
VSAM online fields 259

DB-SUBSCHEMA call 180
DC target

specifying 118
DC target, specifying 24
DDI statements 182

VSAM, for KSDS fixed length files 190
VSAM, for KSDS variable length files 191

DDI, SQL
copybooks, customize 194

DDIFILE Report (DB01) 181, 407
DDN keyword

DB-ERASE 131
DB-FREE 136
DB-MODIFY 139
DB-OBTAIN 149
DB-PROCESS 165
DB-STORE 177

DDS
performing paragraphs 472
receiving multiple screens 426
Reference

508

rfpubb.book Page 508 Tuesday, February 19, 2002 9:56 AM
debugging programs
SCBTRACE option 364

decision table 242
DECL keyword 199
Declarative Section

DECL keyword 199
DPAR keyword 207
USE BEFORE REPORTING 485

declaratives, Report Writer 485
DECLARE Customization Facility structure

limits 319
declaring table rows 122
DEFINE

see DLG-VDEFINE call
delay

see CIC-DELAY call
DELETE

see DLG-VDELETE call
deleteq-TD

see CIC-DELETEQ-TD call
deleting

application components 27
database and file records 128
table rows 128

DEPENDING ON in data structures 349
DETAIL (DE) keyword 477
detail lines, Report Writer 475
detail reports, Report Writer 269, 475
device type, IMS DC generation option 276
DFS0AER

enable use of 82
DIF-DOF name, IMS DC generation option

277
DISCONNECT 284
DISTINCT keyword

DB-DECLARE 125
DB-OBTAIN 149
DB-PROCESS 165

DLG
conversational programming 466
error handling 434

DLG-AUTO-VARIABLE-VDELETE 205
DLG-ISPEXEC call 200
DLG-ISREDIT call 201

DLG-SETMSG call 201
DLG-VCOPY call 203
DLG-VDEFINE call 204
DLG-VDELETE call 205
DLG-VREPLACE call 206
DLG-VRESET call 207
DLIUIB keyword

LINK 322
XCTL 497

Documentation Facility
summary of reports 32, 407

DPAR keyword 207
DS keyword 209
DSCA, IMS DC generation option 278
DSIDERR error flag/condition 236
DUPKEY error flag/condition 236
DUP-ON-REC flag

IDMS DB 225
IMS DB 227
SQL 232
VSAM batch 234
VSAM online 236

DUPREC error flag/condition 236

E
Ed-Error-Pre-Send control point 89
edit masks in data structures 109
edits, field

APFEIN control file 84
bypassing 84, 240
control file for 84
conversion values for 493
date fields, input 114
date fields, internal picture 115
date fields, output 114
error handling 239
European format for numeric fields 84
input, date fields 114
input, time fields 117
internal picture, date fields 115
internal picture, time fields 116
Reference

509

rfpubb.book Page 509 Tuesday, February 19, 2002 9:56 AM
invalid data, allowing or disallowing 343
list of 251
output, date fields 114
output, time fields 117
overview of 251
performing 340
time fields, input 117
time fields, internal picture 116
time fields, output 117
user-defined 251
user-defined, control file switches 84
user-defined, creating 18
user-defined, referencing APS-generated

field names in 19
user-defined, selecting from predefined

list 19
value ranges for 493

edits, fields
bypassing 84
European format for numeric fields 84
user-defined, control file switches 84

EIBRCODE flags, CICS 222, 236
ENDBR keyword

DB-FREE 136
ENDCONV keyword

MSG-SW 338
SEND 433

ENDEVOR, APS Interface
checking in files 51
checking out files 53

ENDFILE error flag/condition 236
END-ON-REC flag

IDMS DB 225
IMS DB 227
SQL 232
VSAM batch 234
VSAM online 236

END-PROCESS flag 169
ENDWHERE keyword

DB-MODIFY 139
Entity Content Report (MS02) 210, 407
Entity Cross Reference Report (MD01) 212,

407
Entity Parts List Report (EN01) 214, 407

Entity Search Utility Report (GS01) 216, 407
Entity Use Report (EN02) 219, 407
ENTRY parameter

CIC-LOAD 61
ENTRY statement 221
ERASE

DB-ERASE call 128
error handling

CICS 222, 236
field edits 84, 239
field edits, bypassing 240
IDMS DB 225
IMS DB, enable use of DFS0AER 82
IMS DC 230
IMS DC, enable use of DFS0AER 82
ISPF Dialog 342, 343
ISPF prototyping 342, 343
SAGE-TRACE-FLAG 233
SCBTRACE option 364
SQL 232
VSAM batch 234
VSAM online 236

ERROR parameter
CIC-CANCEL 56
CIC-DELAY 57
CIC-DELETEQ-TD 58
CIC-DELETEQ-TS 59
CIC-GETMAIN 60
CIC-LOAD 61
CIC-READQ-TD 62
CIC-READQ-TS 63
CIC-RELEASE 65
CIC-SEND-TEXT 66
CIC-START 68
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70

Error Status control point 90
ERROR TRACE

see SET Customization Facility statements
errorpara parameter

LINK 323
MSG-SW 338
NTRY 343, 347
SEND 432
Reference

510

rfpubb.book Page 510 Tuesday, February 19, 2002 9:56 AM
Error-Send-And-Quit control point 90
ESCAPE statement 241
ESDS support

VSAM batch 259
VSAM online 261

European format for numeric fields 84
EVALUATE statement 242, 321

COBOL/ 243
evaluation brackets 75, 81
Exception Status control point 90
EXCLUSIVE keyword

DB-OBTAIN 149
DB-PROCESS 165

exit points 244
EXIT PROGRAM statement 245
exits, customizing

DB-ERASE 133
DB-PROCESS 172
NTRY 345, 346

EXPRESS keyword
MSG-SW 338, 371
SEND 433

expressions 246
SQL 246, 265

extended attributes 42
modifying at run time 45
modifying at run time, ISPF prototyping

274

F
FALSE flag 475
FALSE statement 473
Fast Path

DC calls 299
IM-CHKP 454
IM-CHNG 299
IM-CMD 299
IM-DEQ 454
IM-FLD 301
IM-FSA 301
IM-GCMD 299

IM-GN 299
IM-GSCD 454
IM-GU 299
IM-ISRT 299
IM-LOG 454
IM-POS 303
IM-PURG 299
IM-ROLB 454
IM-ROLL 454
IM-STAT 454
IM-XRST 454
system service calls 454

FD keyword 74, 247
use in Report Writer 247, 404

FD parameter
use in Report Writer 74

FETCH
see DB-FETCH call

FETCH ONLY keyword
DB-DECLARE 125
DB-PROCESS 166

Field Attributes screen 42
field edits

control file 84
Field Edits Report (ED01) 407, 420
Field/Screen Cross Reference Report (SC02)

262, 407
fields

APS-VSAM-NUMREC 259
CICS TP-USERAREA 49, 463
CICS, TP-USER-LEN 49, 463
DLG, TP-USERAREA 466
DLG, TP-USER-LEN 466
field edit, APS-ROW-SUB 21
field edit, -ATTR 21
field edit, -EDIT 20, 21
field edit, -INPT 20
field edit, -LEN 21
IMS DB, error 229
IMS DC, TP-USERAREA 49, 465
IMS DC, TP-USER-LEN 49, 465
ISPF Dialog, error 200, 201, 202, 204, 205,

207
ISPF Dialog, TP-USERAREA 49, 466
Reference

511

rfpubb.book Page 511 Tuesday, February 19, 2002 9:56 AM
ISPF Dialog, TP-USER-LEN 49, 466
Report Writer, internal sum accumulators

380, 438, 447
Report Writer, PAGE-COUNTER 439
SQL, null indicator 349
VSAM batch 258
VSAM online 259

FILE keyword
DB-CLOSE 121
DB-OPEN 158

File Section
file description keyword 247
File-Control statement keyword 305
Report Writer 247

FINAL keyword 78, 477
FIRST keyword

DB-OBTAIN 149
DB-PROCESS 166

flags
ALWAYS 475
APS-END-PROCESS, VSAM batch 258
APS-END-PROCESS, VSAM online 259
CICS, EIBRCODE 222, 236
CICS, error 236
CICS, invocation mode 256
FALSE 473, 475
field edits 19
IDMS DB, error 225
IMS DB, error 227
IMS DC, error 230
IMS DC, invocation mode 257
ISPF Dialog, invocation mode 258
loop counters, DB-PROCESS 169
loop counters, LOOP-LIMIT 81, 171
looping, DB-PROCESS 169
NEVER 475
NTRY, error 344, 345, 347
NTRY, I/O 344, 345, 347
received screen 427
RESET-OBTAIN, VSAM batch 258
RESET-OBTAIN, VSAM online 259
SAGE-TRACE-FLAG 233, 364
S-COBOL 415
SQL, error 232

TP-LINK-INVOKED 258
TP-PROGRAM-INVOKED, CICS 256
TP-PROGRAM-INVOKED, IMS DC 257
TP-PROGRAM-INVOKED, ISPF Dialog 258
TP-SCREEN-INVOKED, CICS 256
TP-SCREEN-INVOKED, IMS DC 257
TP-SCREEN-INVOKED, ISPF Dialog 258
TP-TRANSID-INVOKED, CICS 256
TP-TRANSID-INVOKED, IMS DC 257
TRUE 473, 475
VSAM batch 258
VSAM batch, error 234
VSAM online 259
VSAM online, error 236

FLENGTH parameter
CIC-GETMAIN 60
CIC-LOAD 61

footers, Report Writer 475
format, character 45
FP-ERR flag

IMS DC 230
FREE 135

see DB-FREE call
FREEMAIN

see CIC-FREEMAIN call
FRFM keyword 264
FROM keyword

DB-ERASE 131, 133
DB-MODIFY 140
DB-OBTAIN 150
DB-STORE 177
DLG-VCOPY 203

FROM parameter
CIC-SEND-TEXT 66
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70
DB-STORE 179

functions
SQL 246, 265
SQL, DB-DECLARE 265
SQL, DB-OBTAIN 265
SQL, DB-PROCESS 265

functions, Online Express program
database, predefined, customizing 88
Reference

512

rfpubb.book Page 512 Tuesday, February 19, 2002 9:56 AM
error processing 88
teleprocessing, predefined, customizing

88

G

GENEERATE Report Writer statement 405
General-Pre-Send control point 89
GENERATE Report Writer statement 79, 269
generating applications

job control cards 307
options, generator 271
options, IDMS 293
options, precompiler 364
options, resetting to default values 272
SQL options 46
suppressing database calls 450

generating reports 32, 407
generating screens

generation parameters 273
generation parameters, for all targets

273
generation parameters, for ISPF Dialog

355
generation parameters, for KANJI format

274
Generation Options screen 271
GENONLY keyword

DLG-VCOPY 203
GENONLY parameter

DLG-VDEFINE 204
DLG-VREPLACE 206

GET
see DB-GET call

GETMAIN
see CIC-GETMAIN call

global
field edit messages 239
stubs, creating 444
stubs, keyword 444

GO TO...DEPENDING ON 26, 243

GROUP BY clause 278
DB-DECLARE 278
DB-PROCESS 278

GROUP INDICATE Report Writer clause 438
grouping data elements, SQL 278
GSAM

IM-CLSE 280
IM-GN 280
IM-GU 280
IM-ISRT 280
IM-OPEN 280

H

HAVING clause 278
DB-DECLARE 278
DB-PROCESS 278

headers, Report Writer 475
HELP keyword

DLG-SETMSG 202
HOLD keyword

DB-COMMIT 122
DB-OBTAIN 150, 154
DB-PROCESS 166

HOLD parameter
CIC-LOAD 61
DB-OBTAIN 82

I
IDCS keyword 282
IDM-COMMIT call 282
IDM-CONNECT call 283
IDM-DISCONNECT call 284
IDM-GEN-AUTOSTATUS flag 286
IDM-IF call 285
IDM-PROTOCOL call 285
IDM-RETURN call 287
IDM-ROLLBACK call 288
Reference

513

rfpubb.book Page 513 Tuesday, February 19, 2002 9:56 AM
IDMS DB
ABRT checkpoint 288
binding records 119
calls, list of 97
closing files and subschemas 120
COMT checkpoint 282
COPY IDMS statement 119
deleting records 128
error handling 225
modifying records 138
moving data to Working-Storage 137
native (pass-through) support 282, 288
opening 158
reading records 143, 144
retrieving and processing records 160
specifying as target 24, 118
status flags 225
storing records 175
subschemas 180
topics, list of 100
writing records 175

IDMS Options screen 293
IDMS statement 288
IDMSREC keyword

DB-OBTAIN 150
IDSS keyword 282
IF 285
IF structure 264, 294

nesting 297
ILLOGIC error flag/condition 236
IM-CHKP system service call 454
IM-CHNG data communication call 299
IM-CLSE database call 280
IM-CMD data communication call 299
IM-DB-PCB-KEY-FEED-BACK error field 229
IM-DB-PCB-KEY-KFBLEN error field 229
IM-DB-PCB-SEGLEV error field 229
IM-DB-PCB-SEGNAME error field 229
IM-DEQ system service call 454
IM-FLD database call 301
IM-FSA database call 301
IM-GCMD data communication call 299
IM-GN data communication call 299
IM-GN database call 280

IM-GSCD system service call 454
IM-GU data communication call 299
IM-GU database call 280
IM-ISRT data communication call 299
IM-ISRT database call 280
IM-LOG system service call 454
IM-OPEN database call 280
IM-POS database call 303
IM-PURG data communication call 299
IM-ROLB system service call 454
IM-ROLL system service call 454
IMS

specifying as target 27
IMS DB

abnormal condition processing 227
APIMSIN control file 85
blocking parameter 83
calls, list of 98
checkpoint/restart 454
command codes 50
copylib record parameter 82
DDI statements 182
deleting records 128
enable prototype mode 82
error handling 227
error handling, error fields 229
Fast Path 301, 303, 454
GSAM calls 280
modifying records 138
reading records 143, 145
retrieving and processing records 160
specifying as target 24, 118
status flags 227
storing records 175
subschemas 180
SUPPRESS option 450
topics, list of 100
writing records 175

IMS DC
abnormal condition processing 231
addressability of Linkage Section records

468
APIMSIN control file 85
assigning LOW-VALUES to fields 471
Reference

514

rfpubb.book Page 514 Tuesday, February 19, 2002 9:56 AM
blocking parameter 83
calls, list of 103
checkpoint/restart 454
clearing screen fields 71
conversational programming 465
cursor feedback, specifying 276
DDI statements 182
device type, specifying 276
DIF-DOF name, specifying 277
DSCA, specifying 278
enable prototype mode 82
error handling 230
Fast Path 299, 454
generating program template 340
invocation modes 257
lines per page, specifying for printing 278
MFS function keys, assigning 329
MID MOD, reordering 332
MID, default values, specifying 277
MID, name, specifying 277
MOD, fill character, specifying 278
MOD, name, specifying 278
NTRY customization exits 346
operator logical paging, specifying 277
overriding attributes 40
PCBs 371
performing paragraphs 472
PF keys 362
PF keys, ret 411
program support variables 257
prototyping under ISPF 27
PSBs 371
receiving multiple screens 426
sending data or messages 337
sending messages 339, 431, 434
specifying as target 24, 118
SQL considerations 371
status flags 230
terminating processing 462
terminating programs 460
topics, list of 107
trancodes, creating 330
transferring program control 321

IMSREC keyword
DB-ERASE 131
DB-MODIFY 140
DB-OBTAIN 150, 153
DB-PROCESS 166
DB-STORE 177

IM-STAT system service call 454
IM-SUPPRESS-DB-CALL 450
IM-XRST system service call 454
INCLUDE Customizer statement 304
INCLUDE PANVALET member 11
including in programs

copybooks 304
copylibs/copybooks 452
rule libraries 304, 452

indentation
data structures 112
DB calls 99
DC calls 106
S-COBOL programs 357, 413

INDEXED BY clause in data structures 349
initializing reports, Report Writer 305
INITIATE Report Writer statement 305, 405
INITIMG parameter

CIC-GETMAIN 60
input field edits

date fields 114
time fields 117

Input-Output Section 305
intensity, screen fields 43, 275
internal picture

date fields 115
time fields 116

INTERVAL parameter
CIC-DELAY 57
CIC-START 68

INTO keyword
DB2 unions 481
DB-FETCH 135
DB-OBTAIN 150
DB-PROCESS 166

INTO parameter
CIC-READQ-TD 62
CIC-READQ-TS 63
Reference

515

rfpubb.book Page 515 Tuesday, February 19, 2002 9:56 AM
DLG-REPLACE 206
INVALID KEY condition 39, 296
invocation modes 351

CICS 256
IMS DC 257
ISPF Dialog 258

INV-ON-REC flag
VSAM batch 234
VSAM online 236

INVREQ error flag/condition 236
IO keyword 305

use in Report Writer 404
IO PCB

see PCB
IOERR error flag/condition 236
IRQ-ON-REC flag

VSAM online 236
ISPEXEC

see DLG-ISPEXEC call
ISPF Dialog

addressability of Linkage Section records
468

APDLGIN control file 85
assigning LOW-VALUES to fields 471
calls, list of 104
clearing screen fields 71
COMMIT generation 85, 122
conversational programming 466
displaying screen data 431
error handling 342
generating program template 340
invocation modes 258
invoking programs 323
overriding attributes 40
passing the Commarea 323, 467, 497
PF keys 363, 411
receiving multiple screens 426
resetting attributes 71
screen generation parameters 355
specifying as target 24, 118
terminating programs 460
transferring program control 321, 497

ISPF Panel Options screen 355

ISPF prototyping
displaying screen data 431
error handling 342
generating program template 340
overriding attributes 40
passing the Commarea 497
PF keys 411
receiving multiple screens 426
sending data or messages 337
terminating programs 460
transferring program control 321, 497

ISREDIT
see DLG-ISREDIT call

ITEM parameter
CIC-READQ-TS 64
CIC-WRITEQ-TS 70

iterative expressions, Report Writer 405, 438,
447

IVD-ON-REC flag
VSAM batch 234

J
job control cards 307
joining tables

DB-DECLARE 307
DB-OBTAIN 307
DB-PROCESS 307

JUSTIFIED RIGHT Report Writer clause 438

K
KANJI

setting DBCS 83
KANJI format

generation parameter 274
ruled lines 45
specifying for fields 45

KEY INTO keyword 287
Reference

516

rfpubb.book Page 516 Tuesday, February 19, 2002 9:56 AM
KEYLENGTH keyword
DB-ERASE 131
DB-OBTAIN 150
DB-PROCESS 166

keywords, Program Editor 311
KLEN keyword

DB-ERASE 131
DB-OBTAIN 150
DB-PROCESS 166

L

LAST keyword
DB-OBTAIN 150
DB-PROCESS 166

LEN keyword
DLG-VCOPY 203

LEN parameter
DLG-REPLACE 206
DLG-VDEFINE 205

LENGERR error flag/condition 236
length

screen fields, changing 43
LENGTH keyword

LINK 323
XCTL 497

LENGTH parameter
CIC-GETMAIN 60
CIC-LOAD 61
CIC-READQ-TD 62
CIC-READQ-TS 64
CIC-SEND-TEXT 66
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70

level numbers in data structures 13, 112
light pen detection 44
limits in APS 319
line counter, Report Writer 305
LINE Report Writer clause 477
LINE-COUNTER Report Writer field 305
LINK call 321

Commarea, passing 323

passing the Commarea 323, 463, 467
PSB use with 375

LINKAGE
see TP-LINKAGE call

LINKAGE keyword
SCRNLIST 427

Linkage Section keyword 326
linking programs and subprograms 321, 498
LINK-INVOKED

see TP-LINK-INVOKED flag
literals

MFS system 45
S-COBOL, concatenating 416

literals, Report Writer 388, 491
LK keyword 326
loading

see CIC-LOAD call
Loc(ation) field, Application Painter 26
local

stubs, keyword 444
locations, program

specifying for Customizer source 452
logical paging 435
LONG keyword

DLG-SETMSG 202
looping

DB-PROCESS call 160
loop counters, DB-PROCESS call 169
loop counters, LOOP-LIMIT 81, 171
REPEAT statement 383
UNTIL statement 383, 483
WHILE statement 383, 483

LOOP-LIMIT flag 81, 171
LOW-VALUES in screen fields 71, 471

M
Macro/Program Cross Reference Report

(MC01) 327, 407
macros, user-defined

including in application definition 26
naming conventions 26
Reference

517

rfpubb.book Page 517 Tuesday, February 19, 2002 9:56 AM
program locations for 26
main storage area, CICS 55, 59, 60, 64
masks in data structures 109
MAX function

SQL 265
MDT (modifed data tags)

CICS 336
message switching 337
messages, sending in IMS DC 339, 434
MFS Function Keys screen 329
MFS mapsets

assigning to PF keys 329
system literals 45
trancode literal values, specifying 278
trancodes, creating 330

MFS Trancode Construction screen 330
MID

default values, specifying 277
name, specifying 277

MID MOD Reorder screen 332
MIN function

SQL 265
Misc-User-Paragraphs control point 90
MOCK keyword 333, 405
Mock-Up Report (RP01) 335, 407
MOCKUP Report Writer statement 334, 405
MOD

fill character, specifying 278
MODE keyword

DB-OPEN 159
modifiable extended attributes

prototyping under ISPF 274
modified data tags

CICS 336
setting 43

MODIFY 138
see DB-MODIFY call

MODIFY keyword
MSG-SW 371

modifying
database and file records 138
table rows 138

modifying rows and records 138

moving database records to Working-Stor-
age 143

MSG-SW call 337
IMS PCBs 371

N
nested IF 297
NEVER flag 475
NEXT GROUP Report Writer clause 478
NEXT keyword

DB-OBTAIN 151
DB-PROCESS 167

NEXT parameter
CIC-READQ-TS 64

NEXT SENTENCE 243, 296, 298, 416, 431
NEXTREC keyword

DB-OBTAIN 153
NOABORT keyword

TP-BACKOUT 462
NOALTRESP keyword

MSG-SW 338
SEND 432

NOCA keyword
LINK 323

NOCONT keyword
MSG-SW 338
SEND 432

NOCONTINUE keyword
SEND 433

NODENAME keyword
DB-BIND 119

NOENDCONV keyword
MSG-SW 338
SEND 433

NOERASE keyword
SEND 433

NOEXPRESS keyword
MSG-SW 338
SEND 433

NO-MORE-MSGS flag
IMS DC 230
Reference

518

rfpubb.book Page 518 Tuesday, February 19, 2002 9:56 AM
NO-MORE-SEGS flag
IMS DC 230

NONAPS keyword
LINK 323
XCTL 498

NONE keyword
DB-DECLARE 309
DB-OBTAIN 309
DB-PROCESS 309

NOPURG keyword
MSG-SW 339
SEND 433, 434

NOREDEF keyword
SCRNLIST 427

NORETRY keyword
NTRY 339, 343

NORETURN keyword
SEND 433

Normal Status control point 90
NOSPACE error flag/condition 236
NOSUSPEND parameter

CIC-WRITEQ-TS 70
NOTERM keyword

XCTL 498
NOTFND error flag/condition 236
NOTOPEN error flag/condition 236
NTF-ON-REC flag

IDMS DB 225
IMS DB 227
SQL 232
VSAM batch 234
VSAM online 236

NTRY keyword 340, 351, 427
customization exits 345, 346

NULL
see TP-NULL call

null indicators
SQL 349

null values in screen fields 71, 471
numeric keyboard locking 44, 45
NUMITEMS parameter

CIC-READQ-TS 64

O

OBTAIN 143
see DB-OBTAIN call

OBTAIN DB-OBTAIN call see 143
OCCURS in data structures 349
OF keyword

DB-ERASE 131
DB-OBTAIN 151
DB-PROCESS 167
DB-STORE 177

OK-ON-DC-CALL flag
IMS DC 230

OK-ON-REC flag
IDMS DB 225
IMS DB 227
SQL 232
VSAM batch 234
VSAM online 236

ON SIZE ERROR clause 296, 297
Online Express

control points 88
customizing programs, database call er-

ror processing 88
customizing programs, predefined func-

tions 88
database calls, customizing 88
limits 319

Online Express paragraphs 356
opening

cursor sets 158
records 158

operator logical paging, specifying 277
operators, relational in S-COBOL 417
OPT keyword 344, 351, 370
OPTIMIZE keyword

DB-DECLARE 125
DB-PROCESS 167

OR keyword
DB-DECLARE 125
DB-ERASE 131
DB-MODIFY 140
DB-OBTAIN 151
Reference

519

rfpubb.book Page 519 Tuesday, February 19, 2002 9:56 AM
DB-PROCESS 167
DB-STORE 177

ORACLE
exit points 244

ORDER BY keyword
DB-DECLARE 278
DB-PROCESS 278

ORDER keyword
DB2 unions 482
DB-DECLARE 126, 310
DB-PROCESS 167, 310

OS4
storing records 175

output field edits
date fields 114
time fields 117

OVERPRINT Report Writer clause 352, 405
OWNER keyword

DB-OBTAIN 151

P
page counter, Report Writer 305
PAGE FOOTING (PF) keyword 478
PAGE HEADING (PH) keyword 478
PAGE LIMIT Report Writer clause 353, 405
PAGE-COUNTER Report Writer field 439
PAGE-LIMIT Report Writer option 78
Painter Menu

generating reports 32, 407
PANVALET keyword 11
PARA keyword 356, 413
paragraph names

COBOL/ 73
paragraphs

arguments 359, 472
in Online Express 356
performing 359, 472
S-COBOL names 415

Parm screen, field edits 240
passing the Commarea

CICS 323, 463

DDS 323
ISPF Dialog 323, 467

pass-through support
IDMS DB 282, 288
SQL 441

PCB keyword
DB-ERASE 131, 132
DB-MODIFY 140
DB-OBTAIN 151, 152, 153
DB-PROCESS 167, 168
DB-STORE 177

PCB parameter
DB-STORE 179

PCBs
CICS 375
IMS DC 371

PERFORM call 472
PERFORM statement 358
performing paragraphs with arguments 359,

472
PERMANENT keyword

DB-ERASE 132
PF keys

assigning MFS functions to 329
defined in CICS 361
defined in IMS DC 362
defined in ISPF Dialog 363
RESET call 411

PIC clause
in data structures 110, 112
Report Writer 380, 438, 447, 491

PIC keyword
DLG-VCOPY 203

PIC parameter
DLG-REPLACE 206
DLG-VDEFINE 205

PLUS keyword 478
positional arguments 106
POS-ON-REC flag

IDMS DB 225
IMS DB 227

Post-RB1-Row-To-Reccontrol point 90
Post-Rec-To-RB1-Row control point 90
Post-Rec-To-Screen control point 89
Reference

520

rfpubb.book Page 520 Tuesday, February 19, 2002 9:56 AM
Post-Screen-Read control point 89
Post-Screen-To-Rec control point 89
Pre-Branch control point 89
Precompiler Options screen 364
precompiler, APS

options for 364
predicates, native SQL 126, 132, 141, 152,

168, 178
Pre-Function-Test control point 89
Pre-RB1-Row-To-Rec control point 90
Pre-Rec-To-RB1-Row control point 90
Pre-Rec-To-Screen control point 89
Pre-Screen-To-Rec control point 89
Pre-Term control point 89
Preventing 84
PREVIOUS keyword

DB-OBTAIN 151
DB-PROCESS 167

printing, suppressing in Report Writer 450
PROC keyword 351, 370
Procedure Division

NTRY keyword 340
PROC keyword 370
PROCEDURE DIVISION USING 342, 370,

469
Report Writer 269, 305, 461, 485

PROCESS 160
see DB-PROCESS call

PROCESS-CTR flag 169
processing

database and file records 160
table rows 160

processing rows and records 160
PROG statement for OPT keyword 352
program

control return to calling program 460
control, terminating processing 462

Program DB/DC Report (PG02) 372, 407
Program Definition Report (PG01) 374, 407
Program Editor keywords 311
program locations for Customizer source 452
Program Painter

DB calls 97
DC calls 101

Report Writer structures 404
PROGRAM parameter

CIC-RELEASE 65
program parameter

CIC-LOAD 62
PROGRAM-INVOKED flag

see TP-PROGRAM-INVOKED flag
Program-Invoked-Para control point 89
programs, batch

generation option, Report Writer 364
naming conventions 25
specifying as target 24
specifying in application definition 25

programs, online
naming conventions 25
specifying in application definition 25

Project Group Environment screen 376
protected fields 274

ISPF prototype screens 45
PROTOCOL 285
prototype

enable IMS prototype mode 82
enable VSAM prototype mode 82
generation of, suppressing DB calls 450

prototyping under ISPF
associated programs, specifying 276
CICS or IMS DC applications 27
field names 43
modifiable extended attributes 274
specifying as target 24, 118
suppressing database calls 450

PSBs
naming conventions 26
reporting on 372, 407
specifying in application definition 26
use with CICS 65, 68, 375
use with IMS DC 371

punctuation in S-COBOL programs 416
PURG keyword

MSG-SW 339
SEND 433, 434
Reference

521

rfpubb.book Page 521 Tuesday, February 19, 2002 9:56 AM
Q
QUEUE parameter

CIC-DELETEQ-TD 58
CIC-DELETEQ-TS 59
CIC-READQ-TD 63
CIC-READQ-TS 64
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70

R
READQ-TD

see CIC-READQ-TD call
READQ-TS

see CIC-READQ-TS call
REC keyword 377

DB-BIND 119
DB-DECLARE 125
DB-FREE 136
DB-GET 137
DB-MODIFY 140
DB-OBTAIN 151, 153
DB-PROCESS 167
DB-STORE 178
IDM-CONNECT 283, 284

RECORD CONTAINS Report Writer clause 74
RECORD keyword

MSG-SW 339, 433
NTRY 343

RED keyword 378, 404
REDEF keyword

SCRNLIST 427
REDEFINES clause in data structures 379
redefining

data elements 379
screen records 424, 426

REF keyword
DB-MODIFY 140, 141
DB-OBTAIN 151, 153
DB-PROCESS 167

DB-STORE 178
REFERENCE Report Writer clause 380, 405
registers

see special registers, SQL
relational operators in S-COBOL 417
relative byte address

VSAM online 261
relative record number

VSAM batch 259
VSAM online 261

release
see CIC-RELEASE call

REM keyword 382
RENAMES clause in data structures 13
REPEAT LINKING statement 383
REPEAT statement 264, 383
REPEAT VARYING statement 383
REPLACE

see DLG-VDEFINE call
report file description keyword 247
REPORT FOOTING (RF) keyword 479
Report Generator

summary of reports 32, 407
REPORT HEADING (RH) keyword 479
report mock-ups

data fields 388
identifying in Report Section 333
limits 320
line limits 334
literal fields 388, 491
naming conventions 25
painting 388
PIC string 388
record size 74
specifying in application definition 25

Report Section
keywords 11, 333, 378
Report Writer 11, 333, 378

Report Writer
01 keyword 11
accumulators 305
accumulators, sum 380, 438, 447
begin processing 305
coding rules 405
Reference

522

rfpubb.book Page 522 Tuesday, February 19, 2002 9:56 AM
coding your own WRITE statement 495
control breaks 78, 269, 379
counters 305
declaratives 485
defining the report 378
detail lines 475
detail reports 269, 475
end processing 461
FD keyword 247
File Section 247
footers 475
headers 475
identifying mock-up 333
initializing accumulators 305
Input-Output Section 305
iterative expressions 438, 447
keywords and structures 404
large reports 270
limits 353
literal values 491
mapping data items 438
MOCK keyword 333
multiple detail lines 447
non-printing fields 380
overview 404
Procedure Division statements 269, 305,

461, 485
processing each report 269
record length 74
RED keyword 378
report group types 475
Report Section 378
sample report programs 389
summary reports 269, 475
summing data items 380, 438, 447
suppressing printing 450
USE BEFORE REPORTING 485

reports, APS
Application Definition (AP01) 16, 407
Component List (MS01) 76, 407
Data Structure Definition (DS01) 107, 407
DDIFILE (DB01) 181, 407
Entity Content (MS02) 210, 407
Entity Cross Reference (MD01) 212, 407

Entity Parts List (EN01) 214, 407
Entity Search Utility (GS01) 216, 407
Entity Use (EN02) 219, 407
Field Edits (ED01) 407, 420
Field/Screen Cross Reference (SC02) 262,

407
generating 32, 407
Macro/Program Cross Reference (MC01)

327, 407
Mock-Up (RP01) 335, 407
Program DB/DC (PG02) 372, 407
Program Definition (PG01) 374, 407
Scenario Definition (CN01) 407, 419
Screen Hardcopy/Field Attribute (SC01)

407, 420
summary of 32, 407

REQID parameter
CIC-CANCEL 56
CIC-DELAY 57

reserved words
COBOL and S-COBOL 413
complete listing 409

RESET
see DLG-VRESET call

RESET keyword
DB-OBTAIN 152
DB-PROCESS 168, 171

RESET Report Writer clause 447
RESETBR keyword

DB-OBTAIN 152
RESET-OBTAIN flag

VSAM batch 258
VSAM online 259

RESET-PFKEY call 411
restart

see checkpoint/restart
RETRY keyword

NTRY 343
RETRY parameter

NTRY 83
RETURN 287
RETURN keyword

NTRY 343
Reference

523

rfpubb.book Page 523 Tuesday, February 19, 2002 9:56 AM
REWRITE parameter
CIC-WRITEQ-TS 70

rewriting IDMS DB records 138
RI-ON-REC flag

SQL 232
ROLLBACK

see DB-ROLLBACK call, IDM-ROLLBACK
call

RRDS support
VSAM batch 259
VSAM online 261

RTY-ON-REC flag
IMS DB 227

ruled line attribute, KANJI format 45
RUN-UNIT keyword

DB-BIND 119

S
SAGE-TRACE-FLAG 233
scalar functions

see functions, SQL
Scenario Definition Report (CN01) 407, 419
Scenario Painter

field limit 320
SCHEDULE-PSB

see CIC-SCHEDULE-PSB call
S-COBOL

abbreviated syntax 417
coding rules 415
comments 75
continuation 416
differences from COBOL 413
flags 415
indentation 357, 413
limits 321
overview 413
punctuation 416
verbs 414

S-COBOL structures 413
screen fields

generation parameters 273

generation parameters, for all targets
273

generation parameters, for IMS 329, 330,
332

generation parameters, for ISPF Dialog
355

generation parameters, for KANJI format
274

length, changing 43
limits 320
LOW-VALUES 471
MFS, system literals, defining 45
MFS, trancodes, creating 330
MFS, trancodes, literal values 278
MID MOD reordering 332
naming conventions 42
null values 471
value, initial 43

Screen Hardcopy/Field Attribute Report
(SC01) 407, 420

SCREEN keyword
MSG-SW 339
SEND 433

Screen Painter
field limits 320

SCREEN-INVOKED
see TP-SCREEN-INVOKED flag

screens
attributes, overriding 40
attributes, resetting 40, 71, 471
displaying 340, 431
field edits, performing 340
generating in Linkage Section 426
generation parameters 273
generation parameters, for all targets

273
generation parameters, for IMS 329, 330,

332
generation parameters, for ISPF Dialog

355
generation parameters, for KANJI format

274
I/O areas, reporting on 372
LOW-VALUES 71
Reference

524

rfpubb.book Page 524 Tuesday, February 19, 2002 9:56 AM
naming conventions 25
null values 71
receiving multiple screens 426
redefining 424, 426
sending messages 431
sending multiple pages 435
sending single or multiple screens 431
simulating screen invocation 411
size, specifying 25
specifying in application definition 25
specifying in NTRY 340

screens, APS
Application Selection 19
Bind Options 46
Checkin, ENDEVOR Interface 51
Checkout, ENDEVOR Interface 53
Field Attributes 42
Generation Options 271
IDMS options 293
ISPF Panel Options 355
Job Control Cards 307
MFS Function Keys 329
MFS Trancode Construction 330
MID MOD Reorder 332
Parm 240
Precompiler Options 364
Project Group Environment 376

SCRNLIST call 426
SD keyword 429
SEARCH statement 430
SEC-VIO flag

IMS DC 230
SEG-NOT-FOUND flag

IMS DC 230
SELECT statement keyword 305
SELECTIVE keyword

DB-ERASE 132
SEND call 431
SEND-TEXT

see CIC-SEND-TEXT call
SEQUENCE keyword

DB-OBTAIN 152
SERVICE-RELOAD

see CIC-SERVICE-RELOAD call

SET ERROR Customization Facility statement
81

SET keyword
DB-OBTAIN 152
IDM-IF 285

SET parameter
CIC-GETMAIN 60
CIC-LOAD 62
CIC-READQ-TD 63
CIC-READQ-TS 64

SETMSG
see DLG-SETMSG

SHORT keyword
DLG-SETMSG 202

size limitations in APS 319
software library 26
Sort Description

keyword 429
SORT procedure keyword 357
SOURCE Report Writer clause 405, 438, 447
SPA (Scratch Pad Area) 465
SPA-IO-ERR flag

IMS DC 230
special registers, SQL 440

DB-DECLARE 440
DB-OBTAIN 440
DB-PROCESS 440

Special-Names keyword 441
Specification Editor

DB calls 97
DC calls 101

SPNM keyword 441
SQL

abnormal condition processing 233
adding rows 175, 176
APDB2IN control file 85
bind and translate generation options 46
calls, list of 98
closing cursor sets 120, 160, 161
committing 121
copybooks, customize 194
copybooks, placement 83
cursor naming 125, 165
customization exits 133, 172
Reference

525

rfpubb.book Page 525 Tuesday, February 19, 2002 9:56 AM
declaring table rows 122, 160, 161
deleting rows 128
error handling 232
exit points 244
expressions 246, 265
functions 246, 265
grouping data elements 278
IMS considerations 371
joining tables 307
looping 160, 161
modifying rows 138
native (pass-through) support 441
null indicators 349
opening cursor sets 158, 160, 161
Procedure Division statement 442
processing rows 160, 161
reading rows 134
retrieving rows 134
rollback functions 174
selecting rows 143, 147, 160
special registers 440
specifying as target 24, 118
status flags 232
storing rows 175, 176
subchemas 180
topics, list of 100
unions 480
writing rows 175, 176

SQL keyword 441
SQL Server

exit points 244
starting

see CIC-START call
STOP RUN statement 444
STORE

see DB-STORE call
STUB keyword 444
stubs

see global stubs or local stubs
subroutines/subprograms

calling 321
invoking with ENTRY statement 221
invoking with LINK call 321
invoking with XCTL call 497

SUBSCHEMA keyword
DB-BIND 119

subschemas
DB-SUBSCHEMA call 180
in Program DB/DC Report 372, 407
naming conventions 26
specifying in application definition 26,

180
SUBSCRIPT keyword

DB-ERASE 132
DB-OBTAIN 152
DB-PROCESS 168
DB-STORE 178

sum accumulators, Report Writer 380, 438,
447

SUM function 246
SQL 265

SUM Report Writer clause 380, 405, 447
summary reports, Report Writer 269, 475
SUPPRESS option 450
SUPPRESS Report Writer statement 450
SUPRA statements 451
SY keywords 452
SY macro keywords 465
syntax, abbreviated for S-COBOL 417
SYSID keyword

DB-OBTAIN 152
SYSID parameter

CIC-CANCEL 57
CIC-DELETEQ-TD 58
CIC-DELETEQ-TS 59
CIC-READQ-TD 63
CIC-READQ-TS 64
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70

SYSIDERR error flag/condition 236
SYSMSG field

creating 274
system messages

creating field for 274
system service calls

IMS Fast Path 454
Reference

526

rfpubb.book Page 526 Tuesday, February 19, 2002 9:56 AM
T

task processing, CICS
starting 67
stopping 57

teleprocessing functions, Online Express
customizing 88

temporary storage area, CICS 59, 63, 70
TERM call 460
TERMINATE Report Writer statement 461
terminating programs 245, 444, 460, 462
TERM-PSB

see CIC-TERM-PSB call
time field edits

input 117
internal picture 116
output 117

TIME function, SQL 265
TIME parameter

CIC-DELAY 57
CIC-START 68

TIME special register, SQL 440
TIMESTAMP special register, SQL 440
TIMEZONE special register, SQL 440
TO keyword 283, 284
TP-ATTR

see ATTR call
TP-BACKOUT call 462
TP-CLEAR

see CLEAR call
TP-CLEAR-ATTRS

see CLEAR-ATTRS call
TP-COMMAREA call

CICS 323, 463, 498
CICS, passing 323, 463
IMS DC 465
ISPF Dialog 466
ISPF Dialog, passing 323, 467

TP-ENTRY
see NTRY keyword

TP-LINK
see LINK call

TP-LINKAGE call 468

TP-LINK-INVOKED flag 258
TP-MSG-SW MSG-SW call see 337
TP-NULL call 471
TP-PERFORM call 472
TP-PGM-ERR flag

IMS DC 230
TP-PROGRAM-INVOKED flag

CICS 256
IMS DC 257
ISPF Dialog 258

TP-RESET-PFKEY RESET-PFKEY call see 411
TP-SCREEN-INVOKED flag

CICS 256
IMS DC 257
ISPF Dialog 258

TP-SCRNLIST SCRNLIST call see 426
TP-SCRN-RECEIVED flag 427
TP-SEND SEND call see 431
TP-TERM TERM call see 460
TP-TRANSID-INVOKED flag

CICS 256
IMS DC 257
ISPF Dialog 258

TP-USERAREA 49, 498
CICS 463
IMS DC 465
ISPF Dialog 466

TP-USER-LEN 49
CICS 463
IMS DC 465
ISPF Dialog 466

TP-XCTLXCTL call see 497
trace facility

SCBTRACE 364
trancodes

creating 330
literal values, specifying 278

transaction ID, specifying 275
transferring to other programs 321, 497
TRANSID keyword

SEND 434
TRANSID parameter

CIC-CANCEL 57
CIC-START 68
Reference

527

rfpubb.book Page 527 Tuesday, February 19, 2002 9:56 AM
TRANSID-INVOKED TP-TRANSID-INVOKED
flag see 256

Transid-Invoked-Para control point 89
transient data, CICS 58, 62, 69
translate options, SQL 46
TRUE flag 475
TRUE statement 473
Ty(pe) field, Application Painter 25
TYPE Report Writer clause 405, 475

U
unions

DB-DECLARE 480
DB-PROCESS 480

UNLOCK keyword
DB-FREE 136, 172

unprotected fields 274
UNTIL statement 383, 483
UPDATE keyword

DB-DECLARE 126
DB-PROCESS 168

UPON Report Writer clause 447
USAGE clause in data structures 110
Use 55
USE BEFORE REPORTING Report Writer clause

485
USE BEFORE REPORTING Report Writer state-

ment 405
user exits

Application Painter 27
user help 486

APHLPIN control file 88
user-defined field edits

control file switches 84
creating 18
examples 22
referencing APS-generated field names

in 19
selecting from predefined list 19

USERMACs
application limit 320

USERNAME statement 489, 490
USING keyword 287

V
VALUE clause in data structures 14, 490
value ranges, field edits 493
VALUE Report Writer clause 405, 491
value, screen field, initial 43
variable length file support

VSAM batch 494
VSAM online 262

VCOPY DLG-VCOPY call see 203
VDEFINE DLG-VDEFINE call see 204
VDELETE DLG-VDELETE call see 205
VIEW keyword

DB-ERASE 131, 132
DB-FREE 136
DB-MODIFY 140, 141
DB-OBTAIN 151, 152, 153
DB-PROCESS 167, 168
DB-STORE 177

VIEW parameter
DB-STORE 179

VIO-ON-REC flag
IDMS DB 225
IMS DB 227

VREPLACE DLG-VREPLACE call see 206
VRESET DLG-VRESET call see 207
VSAM

specifying as target 24, 118
VSAM batch

abnormal condition processing 235
APVSAMIN control file 87
closing files 120
customization exits 134
DDI statements 182
deleting records 128
enable prototype mode 82
error handling 234
ESDS support 259
exit points 244
Reference

528

rfpubb.book Page 528 Tuesday, February 19, 2002 9:56 AM
fields and flags 234, 258
modifying records 138
opening 158
reading records 143, 147
retrieving and processing records 160,

163
RRDS support 259
storing records 175, 176
subschemas 180
topics, list of 100
variable length file support 494
writing records 175, 176

VSAM online
abnormal condition processing 237
APVSAMINcontrol file 87
calls, list of 99
customization exits 134
DDI statements 182
deleting rows 128
enable prototype mode 82
error handling 236
ESDS support 261
exit points 244
fields and flags 236, 259
modifying records 138
reading records 143, 148
releasing file resources 135
retrieving and processing records 160,

163
RRDS support 261
storing records 175, 176
subschemas 180
topics, list of 100
variable length file support 262
writing records 175, 176

W
WHERE CURRENT keyword

DB-ERASE 132
DB-MODIFY 141

WHERE keyword
DB-DECLARE 126
DB-ERASE 132
DB-MODIFY 141
DB-OBTAIN 152
DB-PROCESS 168
DB-STORE 178

WHILE statement 383, 483
WITH HOLD keyword

DB-DECLARE 126
DB-PROCESS 169, 172

Working-Storage Section keyword 496
WRITE ROUTINE Report Writer clause 248,

404, 495
WRITEQ-TD CIC-WRITEQ-TD call see 69
WRITEQ-TS CIC-WRITEQ-TS call see 70
WS keyword 496

X

XCTL call 497
CICS PSB 375
Commarea, passing 323
passing the Commarea 323, 463, 467

XCTL call, Specification Painter
passing the Commarea 467
Reference

	Reference
	Table of Contents
	++
	01
	RENAMES
	88
	Application Definition Report (AP01)
	Application Field Edit Routines
	Application Painter
	Application Painter Member Processing Exits
	Selection Code Processing

	Application Reports
	APSMACS Rule Library
	AT END/INVALID KEY
	ATTR
	Attributes, Screen Fields
	Bind and Translate Options, SQL
	CA
	CCODE
	Checkin
	Checkout
	CIC-ADDRESS
	CIC-ASSIGN
	CIC-CANCEL
	CIC-DELAY
	CIC-DELETEQ-TD
	CIC-DELETEQ-TS
	CIC-FREEMAIN
	CIC-GETMAIN
	CIC-LOAD
	CIC-READQ-TD
	CIC-READQ-TS
	CIC-RELEASE
	CICS
	CIC-SCHEDULE-PSB
	CIC-SEND-TEXT
	CIC-SERVICE-RELOAD
	CIC-START
	CIC-TERM-PSB
	CIC-WRITEQ-TD
	CIC-WRITEQ-TS
	CLEAR
	CLEAR-ATTRS
	COBOL/2 Support
	CODE
	Comments
	Component List (MS01)
	CONTROL
	Control Files
	Control Points
	Database Calls
	Data Communication Calls
	Data Structure Definition (DS01)
	Data Structures
	Date and Time Field Edits
	DB/DC Target Combinations
	DB-BIND
	DB-CLOSE
	DB-COMMIT
	DB-DECLARE
	DB-ERASE
	DB-FETCH
	DB-FREE
	DB-GET
	DB-MODIFY
	DB-OBTAIN
	DB-OPEN
	DB-PROCESS
	DB-ROLLBACK
	DB-STORE
	DB-SUBSCHEMA
	DDIFILE Report (DB01)
	DDI Statements
	DDISYMB Flags
	DECL
	DLG-ISPEXEC
	DLG-ISREDIT
	DLG-SETMSG
	DLG-VCOPY
	DLG-VDEFINE
	DLG-VDELETE
	DLG-VREPLACE
	DLG-VRESET
	DPAR
	DS
	Entity Content Report (MS02)
	Entity Cross Reference (MD01)
	Entity Parts List (EN01)
	Entity Search Utility Report (GS01)
	Entity Use Report (EN02)
	ENTRY
	Error Handling
	Error Processing Messages
	ESCAPE
	EVALUATE
	Exit Points
	EXIT PROGRAM
	Expressions, SQL
	FD
	Field Edits
	Field Edit Values
	Fields and Flags, Data Communication
	Field/Screen Cross Reference (SC02)
	FRFM
	Functions, SQL
	GENERATE
	Generator Options
	Generation Parameters, Screens
	GROUP BY
	GSAM Calls
	ID Parameters:
	IDM-COMMIT
	IDM-CONNECT
	IDM-DISCONNECT
	IDM-IF
	IDM-PROTOCOL
	IDM-RETURN
	IDM-ROLLBACK
	IDMS
	IDMS DB Sample Programs
	IDMS Options
	IF/ELSE-IF/ELSE
	$IM- Data Communication Calls
	$IM-FLD
	$IM-FSA
	$IM-POS
	% INCLUDE
	INITIATE
	IO
	ISPF Dialog Compatibility: with IMS DC, CICS
	Job Control Cards
	Joins
	Keywords
	Limits
	LINK
	LK
	Macro/Program Cross Reference (MC01)
	MFS Function Keys
	MFS Trancode Construction
	MID MOD Reorder
	MOCK
	MOCKUP LINES
	Mock-Up Report (RP01)
	Modified Data Tags, CICS Data Transmission
	MSG-SW
	NTRY
	NULL Indicator Field
	OCCURS
	OPT
	OVERPRINT
	PAGE LIMIT
	Panel Options, ISPF Dialog
	PARA and Paragraphs
	PERFORM
	PF Key Values
	Precompiler Options
	PROC
	Program Control Blocks, IO
	Program DB/DC Report (PG02)
	Program Definition Report (PG01)
	Program Specification Blocks
	Project and Group Options
	REC
	RED
	REDEFINES
	REFERENCE
	REM
	REPEAT
	Report Mock-Ups
	Report Sample Program and Mock-Up
	Report Writer Structures
	Reports, Application-Generated
	Reserved Words
	RESET-PFKEY
	S-COBOL Structures
	Scenario Definition Report (CN01)
	Screen Hardcopy/Field Attribute Report (SC01)
	Screen Redefinition
	SCRNLIST
	SD
	SEARCH
	SEND
	SOURCE
	Special Registers
	SPNM
	SQL
	STOP RUN
	STUB
	Subselect Clause
	SUM
	SUPPRESS (IMS DB Option)
	SUPPRESS (Report Writer)
	SUPRA
	SY* Keywords
	System Service Calls
	TERM
	TERMINATE
	TP-BACKOUT
	TP-COMMAREA
	TP-LINKAGE
	TP-NULL
	TP-PERFORM
	TRUE/FALSE
	TRUE, FALSE, ALWAYS, NEVER
	TYPE
	UNION
	UNTIL/WHILE
	USE BEFORE REPORTING
	User Help
	USERNAME
	VALUE (Data Structure)
	VALUE (Report Writer)
	Values, Conversion Values, and Value Ranges
	Variable Length File Support
	WRITE ROUTINE
	WS
	XCTL
	Index

